Defining Engineering Problems

Product/Project Development Approach

Client Statement → Problem Definition → Conceptual Designs → Preliminary Design → Detailed Design → Design Communication → End Product

Project Implementation
Problem Definition

- Input: Client’s problem statement
- Tasks: (what needs to be done):
 1. Establish preliminary user requirements
 2. Clarify/complete user requirements
 3. Rank requirements
 4. Establish constraints
- Output: (Outcome of tasks)
 1. Prepare project/problem definition document
 2. Deliverables

Establish Preliminary User Requirements (i.e. From client statement)

- Usually based on a brief verbal statement (by client)
 - May have a hidden implied solution based on the clients knowledge (or lack of knowledge) about the problem
 - May have hidden agenda (i.e. what is client’s real objective?)
 - May have unrealistic expectations
- e.g. Design of a new heating system for an existing building that houses Duke Energy
 - Duke Energy (i.e. client) wants use of natural gas since it is more efficient
Clarify User Requirements

- Clarify user requirements
- Need to ask
 - What should the product/project outcome do?
 - e.g. heat building
 - What features are needed?
 - e.g. Heat yes, but air conditioning?
 - **What is missing from clients statement?**
 - Remember, the client is not the expert (you are)
 - Low cost/high efficiency?
 - Independent control/automation?
 - In parallel, ask:
 - Why is this needed? Is it really needed?
 - Start thinking about how is this going to be done?

Rank Requirements

- Setting Priorities
 - Rank the importance of the requirements
 - Where design efforts should focus
 - How much effort needs to be devoted to meet a requirement. What requirement can you ‘trade-off’
 - e.g. individual control of the temperature may not be needed if the temperature control is automated
Rank Importance of Requirements

- Ranking:
 - Pair-wise comparison (rapid/easy)
 - Based on personal opinions (and therefore biased)

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Cool Building</th>
<th>Heat Building</th>
<th>Automated Control</th>
<th>Independent Control</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cool building</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Heat building</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Automated Control</td>
<td>1</td>
<td>0</td>
<td>-</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Independent Control</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>1</td>
</tr>
</tbody>
</table>

Identify Constraints

Constraints: Restrictions on an aspect of the design

- Typically stated as a binary choice
- Restricts design space
 - e.g. costs less than $X
 - e.g. uses natural gas
Establishing Deliverables

- What the client will get
 - what will the delivered product/project do/be.
 - Provide estimate of delivery time.
 - Provide an overview of team of expertise that will be assembled to complete the product/project
 - Possibly too early at this stage, but if you can, provide an estimate of resources needed