Preliminary Design & Prototyping

Client Statement → Problem Definition

Conceptual Designs → Preliminary Design

Detailed Design → Design Communication

End Product → Construction-Manufacturing
Proof of Concept

Feasibility
- Will it hold its shape?
- Are the sensors sensitive enough?

Physical Mockup
- Minimize investment ($$$, effort)
- Software (Matlab)
- Mechanism (Lego, cannibalized parts)
- Circuit (breadboard)

Record everything in a bound notebook.
Proof of Concept

- Try to make design **FAIL**
- Low lying fruit
 1. Hand drawn sketch
 2. Mathematical verification
 3. CAD drawing / solid model
 4. Physical mockup

Detailed Comparison

- 2 or 3 Alternatives
- Optimize Alternatives
- Rank WRT Requirements & Constraints
- Numeric Analysis
 1. Weight
 2. Complexity
 - # of components
 - Development time
 3. Cost (estimated)
Preliminary Prototype

- Scale Model
- Look & Feel
- Functionality
- One-Off
 1. Rapid prototype
 2. Custom machined
 3. Breadboard / Veroboard

Evaluation

- Does it work?
- Does it satisfy requirements?
- What are the deficiencies?
- Are they easily corrected?
- Does the customer like it?
Modify & Repeat

- Alter design
- Try other alternative
- Start from scratch
- Re-assess requirements & constraints

Example: Proof of Concept

Hand drawn sketches in bound notebook
Physical Prototype

• Conventional (machined)
 – Choice of material

Solid Model (SolidWorks) → Engineering Drawings → Machine Shop → Part

IGES, DXF File → CNC / Waterjet

• Rapid Prototype
 – Fast
 – No communication error
 – May not be a working model

Solid Model (SolidWorks) → STL File → Rapid Prototype (3-D Printer) → Part or Assembly

Rapid Prototyping

• STL File
 – Standard file format for rapid prototyping
 – Surfaces defined by triangles
 – More triangles =
 • Higher resolution
 • Larger file size
 • Less stair-casing
Preliminary Design

Stair-casing

Rapid Prototyping

- **Stereolithography (SLA)**
 - Layers of photosensitive resin cured by laser

- **Selective Laser Sintering (SLS)**
 - Layers of powder spread over part and sintered together by laser

- **Fused Deposition Modeling (FDM)**
 - ABS melted and applied to part to extrude features layer by layer
Rapid Machining

- Waterjet Cutting
 - 2-D parts (flat material)
 - Bend & spot weld for 3-D
 - Not for wood

Homework

- Mount strain gauge and demonstrate using PCB circuit.
- Demonstrate at beginning of next week’s lab (or during your progress meeting).