
Hot Topic: Enabling Cross-Layer Optimizations in Storage
Systems with Custom Metadata

Elizeu Santos-Neto 1, Samer Al-Kiswany 1, Nazareno Andrade 2,1
Sathish Gopalakrishnan 1, Matei Ripeanu 1

1 University of British Columbia
4075 - 2332 Main Mall

Vancouver, BC, Canada
{elizeus, samera, sathish, matei}@ece.ubc.ca

2 Universidade Federal de Campina Grande
Av. Aprígio Veloso, 882

Campina Grande, PB, Brazil
nazareno@lsd.ufcg.edu.br

ABSTRACT
Today, several data-storage systems allow applications to create
and manage custom metadata to improve data search and
navigability in large-scale storage systems.
Our thesis is that, besides improving search and navigability,
custom metadata can also serve as a two-way communication
mechanism between applications and the storage layer to enable
cross-layer optimizations in a uniform, application-independent
and incremental fashion.

Categories and Subject Descriptors
D.4.3 [Operating Systems]: File Systems Management –
distributed file systems. H.3.4 [Information Storage and
Retrieval]: Systems and Software – distributed systems.

General Terms
Performance, Design, Standardization.

Keywords
Cross-layer optimization, distributed storage systems, custom
metadata.

1. INTRODUCTION
Reinsel et al. [16] estimate that 160 ExaBytes of data were
created, stored and replicated on digital media in 2006. Custom
metadata has been used as a way to help applications cope with
this information overload [1-4, 7, 11, 12]. The benefits of
incorporating custom metadata features in storage systems
include improved search and navigation [2, 7, 19]. Essentially, all
these benefits are realized by using metadata to implicitly
communicate among applications that use the same data.
Our thesis is that besides allowing communication among
software on the application layer, custom metadata can be used as
a bidirectional communication channel between applications and
the storage systems to enable cross-layer optimizations that are
hindered today by an ossified file-system interface. Possible
cross-layer optimizations include:

 Applications can provide hints to the storage system about

their future behaviour – future data use (e.g., co-usage), ideal
data placement, or predicted data lifetime (i.e. temporary
scratch files, or persistent results) – which can all be used to
optimize the performance of the storage layer.

 The storage system can use metadata as a mechanism to
expose, in a standard way, the key attributes of the data items
stored. For example, a distributed storage system can provide
information about files’ location, thus enabling data-aware
scheduling.

 Metadata can be used to express application-driven quality of
service (QoS) requirements (reliability, availability,
throughput, or security/privacy) at the data-item level.

Exposing information between different system layers implies
tradeoffs between performance and transparency. The use of
metadata as an information exposure mechanism between storage
system layers enables experimentation within the
performance/transparency tradeoffs space.
The rest of this paper elaborates on the argument that custom
metadata can benefit storage systems by enabling cross-layer
optimization and focuses on the following questions: What are
the potential cross-layer optimization scenarios enabled by
custom metadata? How has custom metadata been used in the
past? What lessons should we learn from the past to improve the
design future systems?

2. CROSS-LAYER OPTIMIZATIONS IN
STORAGE SYSTEMS
Cross layer optimizations have proved essential in a number of
computing systems [20-22]. For example, in wireless networks,
the interaction between the low reliability of the data transmission
channel and TCP congestion control mechanisms leads to
inadequate performance. Using cross-layer mechanisms to convey
channel capabilities to the upper network layers enables
optimized transport layer operation [22]. HTTP caching is a
second example: the application layer provides information,
through HTML caching directives, for optimizing the behaviour
of lower layers (i.e., the caching and data transfer mechanisms).
We posit that storage systems, just like communication systems,
can benefit from cross-layer optimizations. Such optimizations
for storage systems can be enabled using custom metadata as the
communication mechanism between applications and the storage
system layer and can unlock sizable efficiency gains. On one side,
applications can use a specialized metadata interface to convey

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
HPDC’08, June 23–27, 2008, Boston, Massachusetts, USA.
Copyright 2008 ACM 978-1-59593-997-5/08/06...$5.00

hints about their data usage patterns to the storage system. These
hints can be used by the storage system to optimize its
performance. On the other side, the storage system can use
metadata to provide applications with information only available
at the storage level (e.g., data placement, caching status, status of
a replication process, inconsistency details). The rest of the
section discusses scenarios where this two-way communication
mechanism provides benefits.
Application to storage system communication. Applications
may convey hints about their requirements to the storage system
such as performance, QoS, or replica management directives. We
discuss a number of such scenarios below.
Performance: Recent studies [10, 14] have revealed particular
characteristics of data usage in scientific applications: files are
often used in groups of tens to hundreds of files. Metadata can
enable applications to explicitly communicate file dependencies
and co-usage information. This information can be used to
improve storage system performance through optimized caching,
prefetching, and/or data placement decisions.
A workflow-aware data storage system can, for instance, use the
fact that files are annotated as ‘temporary’ (e.g., between
workflow stages) to make data placement decisions (e.g., cache
temporary files in fast storage, perhaps with limited reliability) or
decisions about data lifetime (e.g., automatically purge old
temporary files, left behind by a buggy workflow or by a
workflow runtime engine crash).
QoS requirements. Different data items can have different,
application-driven QoS requirements (e.g., access performance,
availability or durability, and, possibly, security and privacy). A
storage system that is aware of these requirements can optimize
using individual items’ QoS requirements rather than
pessimistically provision for the most demanding QoS level.
Metadata can be used to express these requirements.
Versioning. Applications can use metadata to indicate
modifications to files. This will allow a file system to manage
versions efficiently. Currently, versioning uses a combination of
timestamps and data comparisons. However file timestamps can
be altered without any change to data; metadata can reflect this
and avoid an additional copy of such files when an incremental
backup is performed. Similarly, metadata could be used to
indicate if changes between versions are major or minor. This
information could be used, when bandwidth is limited, to decide
whether the latest version of a file must be obtained or a locally
cached version, even if slightly outdated, can be used.
Consistency requirements. Applications can use metadata to
inform the storage system about their data consistency
requirements [17]. Making the choice of the consistency
requirements flexible allows the application to manage the
tradeoffs between performance and consistency, while enabling
the storage system to allocate more resources to the data items
that have stringent requirements.
Storage system to application communication. Communication
across layers can occur in the reverse direction as well: from the
storage layer to the application. For example, effective scheduling
decisions for data-intensive applications do need to take into
account data location information, as previous studies show [5,
17] . Ad-hoc solutions employed by existing scientific workflow
runtime engines (e.g., Falkon [15] and [13]) to track data location

could well be replaced by a uniform metadata interface exposed
by the storage system.

Additional storage-level information (e.g., replication count,
information about possible inconsistencies between replicas,
properties and status of the storage device) could be useful when
making application level-decisions as well (e.g., scheduling, data-
loss risk evaluation).

3. PAST USES OF CUSTOM METADATA
File systems that support custom metadata – in addition to
traditional metadata (i.e., creation and modification time, file size,
etc.) – date back to the Semantic File System (SFS)[7]. SFS aims
to reduce the complexity of writing data processing applications.
For example, writing a program that manipulates large quantities
of data spread across multiple files is much easier if the relevant
information is aggregated into one file (or a single directory). To
this end, SFS allows the user to aggregate the result of extracting
characteristics from collections of files (e.g., the lines include a
particular string) as a virtual directory, which is the abstraction
used to provide flexible views over data.
Similar to SFS, Metafs [1], Haystack [2], The Linking File
System (LiFS) [4] and faceted search [11] extend the traditional
file system interface with a metadata interface that allows
applications to create arbitrary metadata. These efforts use
different approaches for providing applications the functionality
of annotating files with arbitrary <key,value> pairs and/or to
express relationships among files.
A more recent use of custom metadata is present in Grid systems.
Globus Tool Kit, for instance, offer a separate metadata service
(e.g., the Metadata Catalog Service [19]) as an independent
service. The metadata augments data objects with application-
specific descriptions. These descriptions are typically structured
using a community-standard schema to ease search for and
grouping of data objects.
Finally, Graffiti [12] is a middleware that allows tagging and
sharing of tags between desktop file systems. As other systems
which aim at providing a metadata interface, it supports tags and
links between files, but focuses on sharing-related issues.
All solutions presented above essentially use metadata to
communicate between applications. Their main focus is on
providing better search, navigability and data organization
capabilities on the application layer with data produced by the
applications themselves; the storage system does not produce or
makes use of the metadata.
Apart from these, some other less common benefits are achieved
through metadata in similar systems:
 Support for application-level consistency through application-

defined dependencies among files. For example, to detect
whether library updates will break applications due to version
mismatches [4].

 Support for data provenance. Richer metadata can be used to
keep track of data provenance, for example the source site for
downloaded files or a workflow definition for derived
computational data [18].

 Simplified application development. Email clients, multimedia
players, or desktop search engines often maintain custom
metadata per file. In traditional file systems, these applications
maintain this metadata at the application level. However, these
solutions are not standardized, which may preclude their reuse

across applications and platforms.Having the richer metadata
mechanism in the file system will simplify these applications
development and enable communication across application.

4. DISCUSSION
This section considers the design of a storage system that supports
custom metadata and discusses the opportunities and challenges
brought by metadata use to support cross-layer communication.

4.1 Design Considerations
Traditional file-system design, is an ‘hourglass’ design, similar to
that of the network stack (Figure 1). In the network stack, the IP
layer works as the ‘neck’ of the hourglass that enables
communication between different link- and transport-layer
implementations as long as they communicate via IP datagrams.
In storage systems, the traditional (and after decades of use,
convenient) POSIX file system API performs a similar role:
enables transparent cooperation between applications and storage
systems. However, unlike IP, which is provisioned with optional
fields in its original design, the traditional file system API does
not provide any mechanism for unanticipated cross-layer
communication. In the IP case, the optional fields in the IPv4
header and the extension headers in IPv6 can be leveraged by
different layers to exchange information unanticipated by system
designers. In fact, IP options fields are used by transport protocols
to provide hints to lower layers in wireless environments [8, 9].
The traditional file-system interface, on the other hand, limits
applications to an ossified list of metadata attributes and value
ranges. We argue that as in the IP example, the file system API
should include an extensible mechanism for communication
between different layers in the application stack.
Two other design lessons relevant to storage system design can be
borrowed from the design of the network stack: First, applications
and storage infrastructure should consider metadata as hints rather
than hard directives, that is metadata might or might not be used
at the other layers of the system, and, second, the addition of
metadata should not impact on the efficiency of applications or
users not using it. If a system does not use the metadata existing
in the system, its performance should not be affected or there will
be a disincentive for the metadata interface to be deployed. IPv4
optional fields affect the size of the datagram header. This has the
undesirable side effect of demanding more resources from routers
to process datagrams which optional fields. IP routers are then
usually configured to handle IP packets with/without these fields
differently, dropping those which use options more frequently [6].

Figure 1: The traditional file system interface view (left) and the file
system interface plus custom metadata features (right). The file
system interface represents the confluence point between the user-
level applications and the storage services.

4.2 Opportunities
An application-agnostic cross-communication layer: A custom
metadata interface, as simple as the possibility of annotating files
with arbitrary <key,value> pairs, can be exploited as an
application-independent communication channel between
applications and the storage layer.
Incremental transition path: Applications and the storage layer
can enable an incremental adoption process exploiting custom
metadata opportunistically (i.e., treat it as hints rather than hard
directives).
New opportunities for usage-based optimization mechanisms:
We believe that the usage-based optimization scenarios presented
in the previous section are only the tip of the iceberg in terms of
possible application-informed optimizations in storage systems.
Thus far, innovation in this area has been stymied by the
complexity of developing ad-hoc solutions to expose
application-level information and to manage this information
consistently within the storage system. Standard metadata
interfaces and integrated management will lower the cost of
exploration and lead to innovative uses of information available
only to users/applications to optimize the storage system.

4.3 Challenges
Standardization is required to make progress: Low coupling
between applications and storage services through metadata
requires new conventions/standards for expressing
application-level knowledge/requirements as metadata.
Cross-layer communication and the optimizations enabled
should not break the separation of concerns among different
layers: We should be careful about cross-layer design. Layering
helps manage complexity by separating concerns. Therefore, it is
necessary to devise mechanisms that limit the interference one
layer may cause on others even though, as we argue, there are
benefits in allowing information cross between layers.
Conflicting metadata: Metadata management should have
mechanisms to detect and resolve conflicting metadata. For
example, an application could mark a file as temporary, while
another application could request three remote replicas for the
same file. The policies associated with metadata management
should decide in case of conflict: they may deny conflicting
annotations, or the storage service may serve the strongest
requirement.
Access control mechanisms may need to be enhanced to regulate
access to metadata at fine granularity, especially in shared
infrastructures.
Implementation complexity and scalability: Past experience
suggests that, while the scalability of the metadata subsystem is
crucial, its design and implementation are non-trivial endeavours.
As an example, the choice to integrate metadata management
directly within the file system or to decouple metadata
management by building a separate service affects the
implementation significantly and requires better analysis. We
note that Data Grid architectures focus on decoupling, to the
extent possible, all services that support storage (e.g., MCS [19]);
this approach eases modifications to metadata management but
may have greater performance penalties.
Policy vs. Mechanism: The cross-layer communication enables
the application to request preferential treatment for certain data

objects. However, the mechanism alone is not sufficient to
prevent a “tragedy of the commons”, where all applications
demand the highest QoS possible leading the system to the regime
equivalent to the absence of differentiated QoS. Policies are
required to prevent applications from “abusing” the cross layer
communication mechanism. These policies may take the form of
admission control or system-wide QoS optimization.
Incentive-compatible adoption: If the benefit a user receives
from deploying a mechanism is realized only when the
mechanism is already widely adopted, it might be difficult to
cross the chasm between early adopters and mainstream users.
For example, drawing another example from the IP protocol,
Fonseca et al. [6] show that packets with IP options (which maps
to custom metadata in storage systems) tend to have higher drop
rate in comparison to packets without IP options. If a particular
site/ISP that does not have applications that benefit from IP
options, it does not have any incentive to process such packets.
This, in turn, works as a disincentive for developers, who do not
use of IP options and avoid poor service. Custom metadata
mechanisms should try to provide benefits to system operators
and applications even if they are not adopted by the entire user
base.

5. SUMMARY
To date extensive custom metadata has been exclusively used to
improve the usability (e.g., search, navigability) of large-scale
storage systems. We take a complementary view and argue that
native support for custom metadata is a key information exposure
mechanism required to enable cross-layer optimizations in storage
systems. In this paper, we present usage scenarios that highlight
the potential benefits and challenges of exploiting custom
metadata as communication mechanism between application and
storage layers. Moreover, we review previous efforts in designing
support for custom metadata features and propose considerations
in conceiving future systems.

6. REFERENCES
1. MetaFS, http://metafs.sourceforge.net/. 2008.
2. Adar, E., D. Karger, and L. Stein. Haystack: Per-User

Information Environments. in International conference on
Information and knowledge management. 1999.

3. Ames, S., et al. Richer file system metadata using links and
attributes. in the 22nd IEEE / 13th NASA Goddard
Conference on Mass Storage Systems and Technologies.
2005.

4. Ames, S., et al. LiFS: An attribute-rich file system for
storage class memories. in 23rd IEEE / 14th NASA Goddard
Conference on Mass Storage Systems and Technologies.
2006.

5. Casanova, H., et al., Heuristics for Scheduling Parameter
Sweep applications in Grid environments, in Heterogeneous
Computing Workshop (HCW). 2000.

6. Fonseca, R., et al., IP Options are not an option, in
Technical Report No. UCB/EECS-2005-24. 2005.

7. Gifford, D.K., et al. Semantic file systems. in CM SIGOPS
Operating Systems. 1991.

8. Gurtov, A. and S. Floyd, Modeling wireless links for
transport protocols. ACM SIGCOMM Computer
Communication Review, 2004. 34(2): p. 85 - 96.

9. Gurtov, A. and R. Ludwig, Lifetime packet discard for
efficient real-time transport over cellular links. ACM
SIGMOBILE Mobile Computing and Communications
Review, 2003. 7(4): p. 32 - 45.

10. Iamnitchi, A., S. Doraimani, and G. Garzoglio. Filecules in
High-Energy Physics: Characteristics and Impact on
Resource Management. in HPDC 2006. 2006. France.

11. Koren, J., et al. Searching and Navigating Petabyte Scale
File Systems Based on Facets. in Workshops of International
Conference for High Performance Computing, Networking,
Storage, and Analysis (SC '07). 2004. Reno, NV.

12. Maltzahn, C., et al. Graffiti: A Framework for Testing
Collaborative Distributed Metadata. in Informatics 21. 2007.

13. Mandal, A., et al. Scheduling Strategies for Mapping
Application Workflows onto the Grid. in IEEE International
Symposium on High Performance Distributed Computing.
2005.

14. Otoo, A.E., D. Rotem, and A. Romosan. Optimal File-
Bundle Caching Algorithms for Data-Grids. in
Supercomputing. 2004.

15. Raicu, I., et al. Falkon: a Fast and Light-weight tasK
executiON framework. in SuperComputing. 2007.

16. Reinsel, D., A Forecast of Worldwide Information Growth
Through 2010, in IDC White Paper. 2007.

17. Santos-Neto, E., et al. Exploiting replication and data reuse
to efficiently schedule data-intensive applications on grids.
in Workshop on Job Scheduling Strategies for Parallel
Processing. 2004.

18. Simmhan, Y.L., B. Plale, and D. Gannon. A survey of data
provenance in e-science. in ACM SIGMOD Record. 2005.

19. Singh, G., et al. A Metadata Catalog Service for Data
Intensive Applications. in Supercomputing. 2003.

20. Skraba, P., et al. Cross-layer optimization for high density
sensor networks: Distributed passive routing. in Ad-Hoc,
Mobile, and Wireless Networks (ADHOC-NOW). 2004.
Berlin, Germany.

21. Wang, J., M. Venkatachalam, and Y. Fang, System
Architecture and Cross-Layer Optimization of Video
Broadcast over WiMAX. IEEE Journal on Selected Areas in
Communications, 2007. 25(4).

22. Warrier, A., L. Le, and I. Rhee. Cross-layer Optimization
Made Practical. in IEEE International Conference of
Broadband Communications, Networks, and Systems
(Broadnets). 2007.

