
CLUSTERING-BASED WEB QUERY LOG

ANONYMIZATION

by

Amin Milani Fard

B.Sc., Ferdowsi University of Mashhad, 2008

a Thesis submitted in partial fulfillment

of the requirements for the degree of

Master of Science

in the School

of

Computing Science

c© Amin Milani Fard 2010

SIMON FRASER UNIVERSITY

Fall 2010

All rights reserved. This work may not be

reproduced in whole or in part, by photocopy

or other means, without the permission of the author.

APPROVAL

Name: Amin Milani Fard

Degree: Master of Science

Title of Thesis: Clustering-based Web Query Log Anonymization

Examining Committee: Dr. Arthur L. Liestman, Professor, Computing Science

Chair

Dr. Ke Wang, Professor, Computing Science

Senior Supervisor

Dr. Jian Pei, Associate Professor, Computing Science

Supervisor

Dr. Martin Ester, Professor, Computing Science

SFU Examiner

Date Approved:

ii

Abstract

Web query logs data contain information which can be very useful in research or marketing,

however, release of such data can seriously breach the privacy of search engine users. These

privacy concerns go far beyond just the identifying information in a query such as name,

address, and etc., which can refer to a particular individual. It has been shown that even

non-identifying personal data can be combined with external publicly available information

and pinpoint to an individual as this happened after AOL query logs release in 2006. In

this work we model web query logs as unstructured transaction data and present a novel

transaction anonymization technique based on clustering and generalization techniques to

achieve the k-anonymity privacy. We conduct extensive experiments on the AOL query log

data. Our results show that this method results in a higher data utility compared to the

state of-the-art transaction anonymization methods.

Keywords: Query logs data, privacy-preserving data publishing, transaction data anonymiza-

tion, item generalization

iii

To my parents, loving wife, family and friends for their support.

iv

Acknowledgments

Here, I would like to express my deep gratitude to my senior supervisor, Prof. Ke Wang for

his profound influence on my research and studies. He introduced me to the field of Privacy-

Preserving Data Publishing and Mining, and taught me a great deal of valuable research

skills. This project and thesis would not have been completed without his guidance. I would

also like to thank the members of my thesis supervisory and examining committee: Prof.

Jian Pei, Prof. Martin Ester, and Prof. Arthur L. Liestman, for their patiently reading

through my thesis, and providing valuable comments.

Thanks also go to all faculty, staff, and friends in the School of Computing Science at

SFU for providing such a nice academic environment. My graduate studies would not have

been interesting without them. I have enjoyed the time with the members in the Database

and Data Mining Laboratory, and would like to special thank Junqiang Liu for his assistance

in a part of my project implementations.

I also thank the School of Graduate Studies and the Faculty of Applied Science at Simon

Fraser University, for scholarship funding that helped me to focus full time on my thesis.

My research was also supported by a Natural Sciences and Engineering Research Council

of Canada (NSERC) Discovery Grant.

Finally, I would like to thank my family for their love and support over the years. And

last but not the least, I am indebted to my lovely wife, Hoda, for her understanding and

encouragement during my research.

v

Contents

Approval ii

Abstract iii

Dedication iv

Acknowledgments v

Contents vi

List of Tables viii

List of Figures ix

List of Algorithms x

1 Introduction 1

1.1 Privacy-Preserving Data Publishing . 2

1.1.1 Attacks and Privacy Models . 5

1.1.2 Data Anonymization Techniques . 9

1.2 Motivations . 11

1.3 Contributions . 13

1.4 Thesis Outline . 14

2 Related Work 15

2.1 Token based Hashing . 16

2.2 Secret Sharing and Split Personality . 16

vi

2.3 (h; k; p)-coherence Method . 17

2.4 Band Matrix Approach . 19

2.5 km-Anonymity . 21

2.6 Transactional k-Anonymity . 24

2.7 Heuristic generalization with heuristic suppression 26

2.8 Other works . 27

2.9 Discussion . 28

3 Problem Statements 30

3.1 Item Generalization . 30

3.2 Least Common Generalization . 31

3.3 Problem Definition . 33

4 Clustering Approach 35

4.1 Transaction Clustering . 35

5 Computing LCG 39

5.1 Bottom-Up Item Generalization . 39

5.2 A Complete Example . 42

6 Experiments and Results 44

6.1 Experiment Setup . 44

6.1.1 Dataset information . 44

6.1.2 Parameters Setting . 45

6.2 Results . 46

6.2.1 Information loss . 46

6.2.2 Average generalized transaction length 47

6.2.3 Average level of generalized items . 47

6.2.4 Sensitivity to the parameter r . 48

6.2.5 Runtime . 48

7 Conclusion 49

Bibliography 50

vii

List of Tables

1.1 The motivating example and its 2-anonymization 12

2.1 Sample database of life styles and illnesses . 17

2.2 Sample database of life styles and illnesses . 27

5.1 Comparison of Partition and Clump in sample 2-anonymization 43

6.1 Transaction database density . 45

viii

List of Figures

1.1 Data collection/publishing phases [27] . 2

1.2 Re-identification by linking to external information [57] 3

1.3 Food taxonomy tree . 9

2.1 Applying band matrix method on sample transaction log 21

2.2 A sample cut in domain generalization . 22

2.3 Domain generalization hierarchy . 26

5.1 BUIG’s processing order . 41

6.1 Comparison of information loss . 46

6.2 Comparison of average generalized transaction length 47

6.3 Comparison of average level of generalized item 47

6.4 Effect of r on Clump1 . 48

6.5 Comparison of running time . 48

ix

List of Algorithms

2.1 Greedy Suppression Algorithm . 19

2.2 Correlation-Aware Anonymization of High-dimensional Data 20

2.3 Apriori-based Anonymization . 23

2.4 Partition: Top-down, Local Generalization 25

4.5 Clump: Transaction Clustering . 37

5.6 Bottom-up Item Generalization . 41

x

Chapter 1

Introduction

Web search engines generally store information of the queries sent by search engine users

known as query logs. These data provides a valuable resource for the purpose of improving

ranking algorithms, query refinement, user modeling, fraud/abuse detection, language-based

applications, and sharing data for academic research or commercial needs [16]. On the other

hand, the release of such data can seriously breach the privacy of search engine users. This

privacy concern goes far beyond just removing the identifying information such as name,

address, phone number, and etc. from a query. In a similar case for relational databases,

Sweeney [56] showed that even non-identifying personal data can be combined with publicly

available information, such as census or voter registration databases, to pinpoint to an

individual.

In 2006 the America Online (AOL) query logs data, over a period of three months, was

released to the public [8] after all explicit identifiers of searchers have been removed. Shortly

after that, the searcher No. 4417749 was traced back to the 62-year-old widow Thelma

Arnold who lives in Lilburn. This was not only a scandal for the AOL, but also a reason for

data publishers to become reluctant in providing researchers with public anonymized query

logs [33].

Since the above mentioned event, an important research problem was opened on render-

ing web query log data in such a way that it is difficult to link a query to a specific individual

while the data is still useful to data analysis. Several recent works start to examine this

problem, with [39] and [2] from web community focusing on privacy attacks, and [34], [58],

and [67] from the database community focusing on anonymization techniques. These works

made good progresses in protecting data privacy, however, they still face a major challenge

1

CHAPTER 1. INTRODUCTION 2

Figure 1.1: Data collection/publishing phases [27]

is reducing the significant information loss of the anonymized data.

1.1 Privacy-Preserving Data Publishing

The subject of this thesis falls into the field of privacy-preserving data publishing (PPDP)

[27], which is different from computer security area that involves access control and authen-

tication methods. The main issue in the area of computer security is to ensure the recipient

of information has the authority to receive that information. While such protections can

safeguard against direct disclosures, they do not address disclosures based on inferences

that can be drawn from released data. The subject of PPDP is not much on whether the

recipient can access to the information or not, but is more on what values will constitute

the information the recipient will receive.

A typical scenario of data collection and publishing phases [27] is shown in Figure 1.1.

The data publisher collects data from some individuals and releases them to a data miner

or the public, called the data recipient, who will then apply many different data mining and

analysis on them. These data mining tasks can vary from a simple count of the number of

specific item to sophisticated cluster analysis, frequent pattern mining, or classification and

prediction problems.

Detailed person-specific data, such as health information, often contains sensitive infor-

mation about individuals. Nowadays that many of such datasets are publicly available for

research purposes, there are more concern about confidentiality and privacy protection of

individuals. Releasing original data can violate an individual privacy without consent that

his/her identity can be disclosed.

CHAPTER 1. INTRODUCTION 3

Figure 1.2: Re-identification by linking to external information [57]

The process of anonymization [17], [18] is a PPDP approach which hides the identity

of individuals, and/or their sensitive information in case the sensitive data is needed for

data analysis. One trivial approach for data anonymization is to remove explicit identifiers

of record owners. However, Sweeney [57] showed that even non-identifying personal data

can be combined with publicly available information, such as census or voter registration

databases, to pinpoint to an individual.

An example is a table T (Age,Gender, Zipcode,Disease) published by a hospital. Typ-

ically, the information on Age, Gender and Zipcode could be publicly available, say from

a voter registration list. Although each of these attributes can not be used to uniquely

identify an individual, however, through their combination a record owner or set of similar

record owners can be identified. We call such attributes the quasi-identifier (QI) attributes

[18]. Also we consider Disease as a sensitive attribute (SA).

The publication must prevent an adversary from inferring accurately the SA value of an

individual. In case a patient has a rare combination on the QI attributes, his/her record

and Disease can be identified with high probability. Figure 1.2 shows how a public voter

list can be linked with a published medical database. Sweeney claimed that almost 87% of

the U.S. population can be uniquely identified [57] as for the case of William Weld, former

governor of the state of Massachusetts.

An attacker who plans for such linking attacks should not only know about the existence

of the victims record in the released data, but also should know about the QI of the victim.

For example, the attacker may observed that his neighbor was hospitalized in a hospital at

which the patient records will be released. If he also knows about age, gender and zipcode,

CHAPTER 1. INTRODUCTION 4

he can launch a linking attacks.

Currently the privacy issue is considered under policies and agreements to restrict the

types, uses, and storage of sensitive publishable data. This, however, has limitation of either

excessive distortion of data or requiring a very high trust level that is often impractical.

For example, privacy agreements cannot ensure that sensitive information will be always

carefully stored and no third parties can access it [27]. Consequently researchers in PPDP

area tries to design methods to guarantee a certain level of privacy while outsourcing the

data.

Data publishers are either trustworthy or not [31]. If the data publisher is not trust-

worthy, he may identify sensitive information of individuals. In this case cryptographic

approaches [68], anonymous communications [15], [36], or statistical methods [62], can be

used to collect data from owners without revealing their identity. In this thesis, we assume

that the data publisher is trustworthy and record owners are willing to provide their personal

information to him.

In practice, we consider two important assumptions for data publishing scenarios [27].

Firstly, the data publisher is not necessarily a data miner and thus all data analysis is done

by the data recipient. Even if he is a data miner, publishing data instead of publishing

data mining results is much more useful and interesting because many other analysis can

be done on such data. We also assume that the data publisher may not know about the

specific data mining task performed by the recipient in advance because otherwise he could

release a customized data set that preserves specific characteristics to improve the data

utility. Therefore the published data should be potentially useful for many data analysis

objectives. An example of such data release is the records of patients in California hospitals

on the Web [14], regardless of its application.

Secondly, in PPDP, the data recipient could also be an attacker. In this case there is

no difference between publishing data for public or for a specific trustworthy recipient. For

example, the data may be published for a research center while not all its staff are trust-

worthy. This assumption makes the problems in PPDP much different from the problems

in cryptography where only authorized recipients can access the data.

In this thesis, we only consider anonymization of a single release, however, in practice

the same data may be published more than once and for different purposes. Some few works

considered multiple release publishing [37], sequential release publishing [59], and continuous

data publishing [12], [65], [28].

CHAPTER 1. INTRODUCTION 5

1.1.1 Attacks and Privacy Models

In a practical PPDP, we assume the attacker has limited background knowledge on the QI

of a victim. The most common privacy threats are record linkage, attribute linkage, and

table linkage, at which an attacker tries to link a record of an individual to a record in a

published table, to a sensitive attribute in a published table, or to the published data table

itself, respectively [27].

Record linkage occurs when the attacker knows the victims record is in the released table

T and tries to identify such record in T . If some value on QI which matches victims QI,

identifies a small number of records in the released table, the victim can be distinguished with

high probability. In attribute linkage, we also assume that the attacker knows the victims

record is in the released table T , and tries to identify the victims sensitive information in

T . Note that, the attacker may not exactly distinguish the victims record, but could infer

his/her SA values based on the set of SA values associated to the set of records matched

with the victim’s QI. If some SA values are much more frequent in such records, the attacker

can infer the SA value with high probability.

Unlike the record linkage or attribute linkage, in table linkage the attacker does not

know whether a victim exist in the released table T and thus tries to determine the pres-

ence/absence of the victims record in T . This is a privacy issue since knowing the presence of

the victims record in a table containing sensitive information, such as table with a particular

type of disease, could breach his/her privacy.

In some other privacy models, we do not concern about records, attributes, or tables that

the attacker can link to an individual, but we concern about the change in the attacker’s

probabilistic belief on the SA value of a victim after seeing the published data. In such

models, we try to ensure uninformative principle [45], which guarantees a small difference

between the attacker’s prior and posterior beliefs [27].

Bellow we explain some well-known approaches to prevent above mentioned attacks.

k-Anonymity

Samarati and Sweeney [55] presented the notion of k-anonymity as a solution to record

linkage attacks. In a k-anonymous table, the QI of each record is exactly the same as at

least k-1 other records, or equivalently each record is indistinguishable from at least k-1 other

records with respect to the QI. This ensures that the probability of linking an individual to

CHAPTER 1. INTRODUCTION 6

a specific record based on QI is at most 1/k.

In order to make records look the same with respect to the QI, generalization and

suppression of values can be used which results in information loss. Many works tried

to achieve k-anonymity while preserving an acceptable data distortion. One important

assumption in k-anonymity model is that each record represents a “distinct” individual.

This means that if several records in a table represent the same individual, a group of size

k records may represent fewer than k person, and this may breach that person’s privacy.

An example is a patient information table in which each patient can have more than one

records.

(X,Y)-Anonymity

To address the above mentioned problem in k-anonymity, (X,Y)-anonymity notion was

proposed in [59], where X and Y are disjoint sets of attributes. This notion specifies that

each value on set X is linked to at least k distinct values on set Y . Consider the patient

records example above in which several records can represent one person. Let X to be the

QI of such table and Y to be a patientID. by making the table (X,Y)-anonymous, each

group with the same X values is linked to at least k distinct patientIDs which ensures each

group represents k distinct patients.

We can look at the k-anonymity as an special case for (X,Y)-anonymity, where X is

the QI and Y is a key in table that uniquely identifies record owners. Also if each value

on X describes a QI and Y represents the SA, we can use this notion to ensure that each

group is associated with a diverse set of sensitive values. A similar notion of multiRelational

k-anonymity was proposed in [49] to ensure k-anonymity on multiple relational tables. This

idea is similar to (X,Y)-anonymity, where X is the set of QI and Y is the person’s ID. [27].

`-Diversity

The `-diversity notion was proposed in [46] as a solution to attribute linkage attack. The

`-diversity requires each group of records with the same QI, to have at least ` “well-

represented” SAs. Informally this means ensuring that there are at least ` distinct values

for the SA in each such group.

This distinct ` values automatically satisfies k-anonymity for the `-diversity notion,

CHAPTER 1. INTRODUCTION 7

where k=`, since each group with unique QI has at least ` records. One limitation of `-

diversity is that it can not prevent probabilistic inference attacks. In case some SAs are

much more frequent than others in a group, such as Flue versus HIV, an attacker can infer

the SA value very likely. Another limitation of this approach is the assumption that the

frequencies of the various SA values are some how the same. Making such tables `-diverse

may result in a large information loss [19].

Confidence Bounding

The problem of how to bound the confidence of inferring a SA, as another solution to

attribute linkage attack, was studied in [60]. Authors specified a privacy template in the

form 〈QI → s, h〉, where s is a sensitive value, and h is a threshold. Their proposed privacy

notion ensures that the attackers confidence of inferring the sensitive value s in any group

on QI is bounded to at most h.

A general privacy model, called (X,Y)-Privacy [59], combines both (X,Y)-anonymity

and confidence bounding which ensures each group x on X to have at least k records and

conf (x→ y) ≤ h for any y in Y , where Y is a set of sensitive values and h is the confidence

threshold as in confidence bounding model. Another similar work is the (α, k)-anonymity

[63] where α is the confidence threshold. If the sensitive values are skewed both (X,Y)-

privacy and (α; k)-anonymity may result in high distortion [27].

t-Closeness

The skewness attack on `-diverse data was explained in [43]. Authors observed that if the

overall distribution of a SA is skewed, `-diversity can not prevent attribute linkage attacks.

For example if 95% of patients have Flu and 5% have HIV, and a group with the same QI

has 50% of Flu and 50% of HIV, although this satisfies 2-diversity, any patient in the group

could be inferred as having HIV with 50% confidence, while it was 5% in the overall table.

As a solution to this kind of attack, authors proposed the notion of t-Closeness.

t-closeness requires the distribution of a sensitive attribute in any group on QID to be

close to the distribution of the attribute in the overall table. It applies the Earth Mover

Distance (EMD) function to measure the closeness between two distributions and ensures

the closeness to be within t. However, this approach has some limitations including lack of

flexibility in specifying different protection levels for different sensitive values, not suitable

CHAPTER 1. INTRODUCTION 8

EMD function for preventing attribute linkage on numerical sensitive attributes [42], and

high information loss and removing some correlation between QI and sensitive attributes

[27].

(ρ1, ρ2)-Privacy

As a randomization technique to satisfy data privacy, [23] proposed (ρ1, ρ2)-privacy notion.

In this approach the adversary’s knowledge before data release (prior knowledge) and after

data release (posterior knowledge) are the privacy parameters. The (ρ1, ρ2)-privacy guar-

antees that if attacker’s prior knowledge on a SA value is at most ρ1 then after seeing the

released data and the new perturbed SA value, his posterior knowledge is bounded by ρ2,

where 0<ρ1 < ρ2<1.

For example in the patient database, a (0.01-0.1)-privacy ensures that if for an attacker,

before publication the probability that a patient has HIV is 0.1, after publication this

probability can increase at most to 0.1.

δ-Presence

A table linkage could happen if an attacker can infer the presence or the absence of the

victims record in the released table with high confidence. In order to prevent such attacks,

[49] proposed δ-Presence notion to bound the probability of inferring the presence of an

individual’s record within a range (δmin, δmax). This notion can indirectly prevent record

and attribute linkages because if the attacker has at most δ% of confidence that an indi-

viduals record is present in the released table, then the probability of a successful linkage

to her record and sensitive attribute is at most δ% [27]. One important assumption in this

method which may not be hold in practical, is that the data publisher has access to the

same external table as the attacker has.

ε-Differential Privacy

An interesting notion of privacy was proposed in [21] called ε-differential privacy which

considers that participating in a statistical database should not substantially increase the

risk of privacy breach for an individual. Basically, this model guarantees that the addition

or removal of a “single” record in the database will not significantly change the analysis

results. ε-differential privacy can not prevent record and attribute linkage attacks, but it

CHAPTER 1. INTRODUCTION 9

Figure 1.3: Food taxonomy tree

assures record owners that submitting their personal information to the database is very

secure and almost no personal information will be discovered from the database with their

information. Authors proved that this method can provide a guarantee against attackers

with arbitrary background knowledge.

1.1.2 Data Anonymization Techniques

The well-known approaches for modifying a table to satisfy a privacy requirement are:

generalization, suppression, anatomization, permutation, and perturbation.

Generalization and Suppression

In suppression we delete some values, and in generalization we replace some values with

their less specific values. For the generalization, we replacement categorical attributes with

respect to a given taxonomy. In Figure 1.3, the parent node Meat is more general than the

child nodes Beef and the root node, Food, represents the most general value in a food tax-

onomy tree. Values in numerical attributes are usually replaced with an interval containing

the original values. Both generalization and suppression produce consistent representation

of original data. There are five common generalization schemes [27]:

In full-domain generalization scheme [40], [54], [57], all values in an attribute are gener-

alized to the same level of the taxonomy tree. For example, in a full-domain generalization

in Figure 1.3, if Beef and Chicken are generalized to Meat, then Apple, Orange and Ba-

nana should be generalized to Fruit. This method has a high information loss due to the

obligatory generalization in a same level.

In subtree generalization scheme [9], [29], [30], [35], [40], either all child nodes or none

are generalized. For example, in Figure 1.3, this scheme requires that if Beef is generalized

to Meat, then the other child node, Chicken, would also be generalized to Meat, but Apple

and Orange, which are child nodes of Fruit, can remain ungeneralized. This scheme, forms

CHAPTER 1. INTRODUCTION 10

a “cut” through the taxonomy tree.

Similar to the subtree generalization, sibling generalization scheme [40] also generalizes

child nodes except that some siblings may remain ungeneralized. For example, in Figure

1.3, if Apple and Orange are generalized to Fruit, but Banana remains ungeneralized, Fruit

is interpreted as all fruits covered by Fruit except for Banana.This scheme produces less

distortion than subtree generalization schemes because it does not generalize all child nodes.

In cell generalization scheme [40], [63], [66], also known as “local recoding”, only some

instances of a value will be generalized compared to “global recoding” in which if a value

is generalized, all its instances are generalized. For example in a transaction database the

in some records Apple could be generalized to Fruit, while the in some records not. Local

recoding scheme has a smaller data distortion than the global recoding. However most

standard data mining methods treat Apple and Fruit as two independent values, while they

are not.

Three main suppression techniques are Record suppression [9], [35], [40] [54],value sup-

pression [60], [61], and cell suppression (or local suppression)[17] [47], which are processes of

suppressing an entire record, all instances of a given value, and suppressing some instances

of a given value in a database, respectively.

Anatomization and Permutation

Removing the association between QI and SAs by grouping and shuffling sensitive values is

the main approach in anatomization and permutation techniques.

In anatomization [64] unlike generalization and suppression, the QI or the SAs are not

modified and instead the QI data and the SAs data will be published in two separate tables:

a QI table containing the quasi-identifier attributes, a SA table containing the sensitive

attributes, and tables have one common GroupID attribute. With the advantage of not

changing QI and SAa, authors showed that answering aggregate queries on the QI and

SAs on anonymized data using this method can be more accurat than the generalization

approach. On the other hand, standard data mining tools, such as classification, clustering,

and association mining tools, may not be applied to such data published in two tables [27].

Authors in [69] proposed permutation approach which also removes association between a

quasi-identifier and a numerical sensitive attribute. In this technique, records are partitioned

into groups and then their sensitive values within each group will be shuffled.

CHAPTER 1. INTRODUCTION 11

Perturbation and Randomization

In perturbation technique, data is distorted by adding some noise, aggregating/swapping

values, or generating synthetic data based on some statistical properties of the original data

[27]. This has a long history in statistical disclosure control [1] which is simple and efficient,

and at the same time preserves statistical information.

The general idea in perturbation is to replace the original data values with some synthetic

data values in such a way that the statistical information is preserved. Since the perturbed

data records do not correspond to an original record, an attacker cannot infer the sensitive

information from the published data. However, this makes some data mining tasks difficult

as the records do not correspond to a real life record owner.

In additive noise technique [1] [11] a sensitive numerical data such as salary is altered by

adding a random value drawn from some distribution. Authors in [5] measured the privacy

by how closely the original values of an altered attribute can be estimated. Studies in [26],

[7], [20], [24] showed that data modified by adding random noise not only preserve some

simple statistical information, like means and correlations, but also the randomized data

can be useful for some data mining tasks.

The general idea of data swapping is to anonymize records by exchanging values of SAs

among them. It was shown in [52], [51] that this method can protect numerical and cate-

gorical attributes. [23] also proposed a randomization approach based on data swapping to

limit the attacker’s background knowledge on inferring sensitive attributes while preserving

data utility.

The synthetic data generation approach is also used in statistical disclosure control

methods [53] by building a statistical model from the data and then publishing some sampled

data from the model. In a similar approach called condensation [3], records are condensed

into multiple groups within which some statistical information will be extracted that preserve

the mean and correlations of different attributes. In the next step, based on the statistical

characteristics of the group, some generated records for each group will be published.

1.2 Motivations

We study the query log anonymization problem with the focus on reducing information loss.

Query log data can be seen as a special case of transaction data, where each transaction

contains several “items” from an item universe I. In this thesis we also treated query logs

CHAPTER 1. INTRODUCTION 12

as transaction data and proposed our approach upon it.

In the case of query logs, each transaction represents a query and each item represents

a query term. Other examples of transaction data are emails, online clicking streams,

online shopping transactions, and so on. As pointed out in [58] and [67], for transaction

data, typically the item universe I is very large (say thousands of items) and a transaction

contains only a few items. For example, each query contains a tiny fraction of all query

terms that may occur in a query log. If each item is treated as a binary attribute with

1/0 values, the transaction data is extremely high dimensional and sparse. On such data,

traditional techniques suffer from extreme information loss [58] and [67].

Recently, the authors of [34] adapted the top-down Mondrian [41] partition algorithm

originally proposed for relational data to generalize the set-valued transaction data. We refer

to this algorithm as Partition in this thesis. They adapted the traditional k-anonymity [54]

and [57] to the set valued transaction data. A transaction database is k − anonymous if

transactions are partitioned into equivalence classes of size at least k, where all transactions

in the same equivalence class are exactly identical. This notion prevents linking attacks in

the sense that the probability of linking an individual to a specific transaction is no more

than 1
k .

TID Original Data Partition

t1 < Orange, Chicken,Beef > < Fruit,Meat >

t2 < Banana,Beef, Cheese > < Food >

t3 < Chicken,Milk,Butter > < Food >

t4 < Apple, Chicken > < Fruit,Meat >

t5 < Chicken,Beef > < Food >

Table 1.1: The motivating example and its 2-anonymization

Our insight is that Partition method suffers from significant information loss on trans-

action data. Consider the transaction data S = {t1, t2, t3, t4, t5} in the second column of

Table 1.1 and the item taxonomy in Figure 1.3. Assume k = 2. Partition works as follows.

Initially, there is one partition P{Food} in which the items in every transaction are gener-

alized to the top-most item food. At this point, the possible drill-down is Food → {Fruit,

Meat, Dairy}, yielding 23-1 disjoint sub-partitions corresponding to the non-empty subsets

of {Fruit, Meat, Dairy}, i.e., P{Fruit}, P{Meat}, ..., and P{Fruit,Meat,Dairy}, where the curly

CHAPTER 1. INTRODUCTION 13

bracket of each sub-partition contains the common items for all the transactions in that

sub-partition. All transactions in P{food} are then partitioned into these sub-partitions.

This results in assigning transactions t1 and t4 to P{Fruit,Meat}, t2 to P{Fruit,Meat,Dairy},

t3 to P{Meat,Dairy}, and t5 to P{Meat}. Consequently, all sub-partitions except P{fruit,meat}

violate k-anonymity (for k=2) and thus are merged into one partition P{food}. Further par-

titioning of P{fruit,meat} also violates k-anonymity. Therefore, the algorithm stops with the

result shown in the last column of Table 1.1.

One drawback of Partition is that it stops partitioning the data at a high level of the

item taxonomy. Indeed, specializing an item with n children will generate 2n-1 possible

sub-partitions. This exponential branching, even for a small value of n, quickly diminishes

the size of a sub-partition and causes violation of k-anonymity. This is especially true for

query logs data where query terms are drawn from a large universe and are from a diverse

section of the taxonomy.

Moreover, the Partition does not deal with item duplication. As an example, the gen-

eralized t3 in the third column of Table 1.1 contains only one occurrence of food, which

clearly has more information loss than the generalized transaction <Food, Food, Food> be-

cause the latter tells more truthfully that the original transaction purchases at least three

items. Indeed, the TFIDF used by many ranking algorithms critically depends on the term

frequency of a term in a query or document. Preserving the occurrences of items (as much

as possible) would enable a wide range of data analysis and applications.

1.3 Contributions

To render the input transaction data k-anonymous, our observation is: if “similar” trans-

actions are grouped together, less generalization and suppression will be needed to render

them identical. As an example, grouping two transactions <Apple> and <Milk> (each hav-

ing only one item) entails more information loss than grouping two transactions <Apple>

and <Orange>, because the former results in the more generalized transaction <Food>

whereas the latter results in the less generalized transaction <Fruit>. Therefore, with a

proper notion of transaction similarity, we can treat the transaction anonymization as a

clustering problem such that each cluster must contain at least k transactions and these

transactions should be “similar”. Our main contributions are as follows:

Contribution 1. For a given item taxonomy, we introduce the notion of the Least

CHAPTER 1. INTRODUCTION 14

Common Generalization (LCG) as the generalized representation of a subset of transactions,

and as a way to measure the similarity of a subset of transactions. The distortion of LCG

models the information loss caused by both item generalization and item suppression. We

devise a linear-time algorithm to compute LCG.

Contribution 2. We formulate the transaction anonymization as the problem of clus-

tering a given set of transactions into clusters of size at least k such that the sum of LCG

distortion of all clusters is minimized.

Contribution 3. We present a heuristic linear-time solution to the transaction anonymiza-

tion problem.

Contribution 4. We evaluate our method on the AOL query logs data.

1.4 Thesis Outline

The rest of this thesis is organized as follows:

• Chapter 2 studies the related works in the literature of privacy-preserving web query-

log data publishing from web community with focus on privacy concern attacks, and

from the database community with focus on transaction database anonymization.

• Chapter 3 describes basic definitions, specifically definitions of Least Common Gener-

alization (LCG), information loss metric, and the problem statements.

• Chapter 4 gives our clustering algorithm Clump, as an effective heuristic linear-time

solution to the anonymization problem defined in chapter 3. This anonymization

method was also published in [48].

• Chapter 5 presents the detailed algorithm for computing LCG which is part of the

Clump algorithm.

• Chapter 6 presents the results of extensive experiments on the AOL query log data.

Results shows the superiority of the proposed method with respect to the utility of

data compared to the state of-the-art transaction anonymization methods.

• Chapter 7 concludes the thesis, and suggests some future work.

Chapter 2

Related Work

A recent survey [16] discussed seven query log privacy-enhancing techniques from a pol-

icy perspective, including deleting entire query logs, hashing query log content, deleting

user identifiers, scrubbing personal information from query content, hashing user identifiers,

shortening sessions, and deleting infrequent queries.

Log deletion is the most privacy-enhancing technique; however, the utility of data drops

to zero. Hashing queries is also a vulnerable technique since other publicly available data

sets, such as previously released query logs, or search engine statistics about queries in un-

hashed form, can be used to pinpoint an individual. Similarly, hashing identifiers cannot

guarantee eliminating the risk of breaching individual privacy.

Even after removing identifying information it may still be possible to link queries back

to individuals by using other publicly available information. Although shortening sessions

can be highly privacy-protective, due to removal of the link between a user and his/her

entire query history, the query content may still contain identifying information, and thus

the risks from accidental and malicious disclosure will not be totally resolved. In addition,

query logs with short sessions are less useful for analysis.

Deleting queries that appear infrequently in the logs was suggested in [2] as an effective

way of removing queries that contain identifying information. Setting a threshold for being

“infrequent” is however very challenging. Also studies showed that a large number of queries

in huge query log datasets, occur a small number of times [10]. Consequently, this approach

may lead to deletion of a remarkable amounts of non-identifying queries.

Although the above mentioned techniques protect privacy to some extent, there is a

lack of formal privacy guarantees. For example, the release of the AOL query log data still

15

CHAPTER 2. RELATED WORK 16

leads to the re-identification of a search engine user even after hashing users identifiers [8].

The challenge is that the query content itself may be used together with publicly available

information for linking attacks.

The problem of web query-log anonymization have been examined with [39] and [2] from

web community with focus on privacy concern attacks, and [34], [58], [67], and [44] from

the database community with focus on transaction database anonymization. The major

challenge for all query-log anonymization is reducing the significant information loss of the

anonymized data.

2.1 Token based Hashing

In token based hashing [39] a query log is anonymized by tokenizing each query term and

securely hashing each token to an identifier. However, if an unanonymized reference query

log has been released previously, the adversary could apply co-occurrence analysis and fre-

quency analysis on the reference query log to extract statistical properties of query terms

and then processes the anonymized log to invert the hash function based on co-occurrences

of tokens within queries. For example, if an adversary knows how often the query “Tom

Cruise” appears in a previously released log can use the statistics to decipher the separate

hashes for “Tom” and “Cruise”.

2.2 Secret Sharing and Split Personality

Secret sharing [2] is another query anonymization method which splits a query into k ran-

dom shares and publishes a new share for each distinct user issuing the same query. This

technique guarantees k-anonymity because each share is useless on its own and all the k

shares are required to decode the secret. This means that a query can be decoded only

when there are at least k users issuing that query. The result is equivalent to suppressing

all queries issued by less than k users. Since queries are typically sparse, many queries will

be suppressed as a result.

Split personality, also proposed in [2], focus on reducing the possibility of reconstructing

search history of a user by splitting the logs of each user based on “interests”. For example,

if a user is interested in both Sport and Art, then he will have two different profiles, one

for the queries about Sport, and the other for the queries related to Art. In this way, the

CHAPTER 2. RELATED WORK 17

users become dissimilar to themselves, however the distortion makes it more difficult for

researchers to correlate different facets.

2.3 (h; k; p)-coherence Method

The coherence method proposed in [67] eliminates both record linkage attacks and attribute

linkage attacks. The (h, k, p)-coherence privacy criterion ensures that at least k transactions

must have any subset of at most p non-sensitive items and at most h percent of these

transactions have some sensitive item. The parameter p, models the power of the adversarys

knowledge. In other words, (h, k, p)-coherence ensures that, for an attacker with the power p,

the probability of linking an individual to a transaction is limited to 1/k and the probability

of linking an individual to a sensitive item is limited to h. The following example is borrowed

from [67].

Example 2.3.1 Consider the database D in Table 2.2 for life styles and illnesses research.

“Activities” can be drinking, smoking, etc., which are non-sensitive, and “Medical History”

is the persons major illness, which is considered sensitive. For k=2, p=2, and h=80%, D

violates (h,k,p)-coherence. Since only one transaction T2 is {a, b}-cohort, if an adversary

has the background knowledge {a, b}, T2 can be uniquely identified. Two transactions T2 and

T3 are {b, f}-cohort. Since both T2 and T3 have “Hepatitis”, an adversary with background

knowledge {b, f}, can be 100% sure about the medical history. However, for p=1, k=2, and

h=80%, D is (h,k,p)-coherent.

TID Activities Medical History

t1 a, c, d, f, g Diabetes

t2 a, b, c, f Hepatitis

t3 b, d, f, x Hepatitis

t4 b, c, g, y, z HIV

t5 a, c, f, g HIV

Table 2.1: Sample database of life styles and illnesses

Let β denote the adversary’s background knowledge that a transaction contains some

non-sensitive items. An attack is modeled in the form of β → e, where e is a sensitive item.

CHAPTER 2. RELATED WORK 18

Let Sup(β) denote the support of β i.e., the number of such transactions. P (β → e) =

Sup(β ∪ {e})/Sup(β) is the probability that a transaction contains e given that it contains

β. The breach probability of β, denoted by Pbreach(β) is the maximum P (β → e) for any

private item e. Assume an adversary’s background knowledge is up to p non-sensitive items,

i.e., |β| ≤ p. If Sup(β) < k, the adversary is able to link an individual to a transaction

(record linkage attack) and if Pbreach(β) > h, the adversary is able to link an individual to

a sensitive item (attribute linkage attack). A mole, is any background knowledge (at most

to the size p) that can result in a linking attack. Coherence aim at eliminating all moles.

Definition 2.3.1 (Coherence) For a setting of (h; k; p), a public itemset β with |β|≤p
and Sup(β)>0 is called a mole if either Sup(β) < k or Pbreach(β) > h. The data D is

(h; k; p)-coherent if D contains no moles.

A mole can be removed by suppressing any item in the mole. Authors in [67] applied the

total item suppression technique to enforce (h, k, p)-coherence. Total suppression of an item

refers to deleting the item from all transactions containing it. Although total suppression

results in a high information loss when the data is sparse, it has two nice properties: (1)

eliminating all moles containing the suppressed item, and (2) keeping the support of any

remaining itemset, equal to the support in the original data. The latter one implies that

any result derived from the modified data, also holds on the original one. This is not hold

for partial suppression, and that is the reason authors applied total item suppression.

The information loss is measured by the amount of items suppressed. Since an optimal

solution to (h, k, p)-coherence, i.e. (h, k, p)-coherence with minimum information loss, was

shown to be NP -hard [67], authors proposed a heuristic solution.They defined minimal

moles as those moles that contain no proper subset as a mole in which removing them is

sufficient for removing all moles. Their algorithm greedily suppresses the next item e with

the maximum Score(e) until all moles are removed, where Score(e) measures the number

of minimal moles eliminated per unit of information loss. Algorithm 2.1 shows this greedy

algorithm.

In order to find all minimal moles, authors proposed an algorithm similar to the well-

known Apriori [6] algorithm for mining frequent itemsets. It examines i-itemsets in the

increasing size i until an itemset becomes a mole for the first time, at which time it must be

a minimal mole. If an examined i-itemset β is not a mole, we then extend β by one more

item.

CHAPTER 2. RELATED WORK 19

Algorithm 2.1 Greedy Suppression Algorithm

Input: Transaction database: D, Privacy parameters: h, k, p
Output: Anonymized transaction database: D

1. Suppress all size-1 moles from D
2. while there are minimal moles in D do
3. Suppress the public item e with the maximum Score(e) from D
4. end while

2.4 Band Matrix Approach

Authors in [32] proposed a data anonymization method to prevent attribute linkage attacks

for high-dimensional data with sensitive items, such as transaction data, using a band matrix

technique. In a band matrix, non-zero entries are confined to a diagonal band and zero

entries on either side. In such a matrix, rows correspond to transactions and columns

correspond to items, with the 0/1 value in each entry. In their method, items are divided

into sensitive items (private items), and non-sensitive items (public items). A non-sensitive

transaction, is a transaction with no sensitive items and sensitive transactions are those

with at least one sensitive item.

A transaction set T has privacy degree of p if the probability of associating any trans-

action t∈T with a particular sensitive item does not exceed 1
p . To achieve this privacy

requirement, [32] suggested applying two phases: (1) transforming the data to a band

matrix with respect to non-sensitive attributes, and (2) grouping each sensitive transaction

with non-sensitive transactions or sensitive ones with different sensitive items. The intuition

why such band matrix formation is helpful, is that it organizes data such that consecutive

transactions are very likely to share many common non-sensitive items and this results in a

smaller reconstruction error.

In the first phase of the anonymization [32], a band matrix is built such that the total

bandwidth is minimized. This problem was shown to be NP -complete, and thus authors

applied heuristic Reverse Cuthill-McKee (RCM) algorithm approach which is one of the

most effective algorithms to transform a general matrix into a band matrix by permuting

rows and columns. Since band matrix concept is originally defined for square matrix and

the transaction database matrix is a non-square one, we add some columns corresponding to

fake item and apply padding with zero entries. RCM algorithm was designed for symmetric

CHAPTER 2. RELATED WORK 20

Algorithm 2.2 Correlation-Aware Anonymization of High-dimensional Data

Input: Transaction database: D, Privacy degree: p
Output: Anonymized transaction database: D

1. Initialize histogram H for each sensitive item s∈S
2. remaining=|T |
3. while (∃t∈T |t is sensitive) do
4. t ← next sensitive transaction in T
5. CL(t) ← non-conflicting αp pred. and αp succ. of t
6. G ← {t}∪ p 1 trans. in CL(t) with closest QI to t
7. Update H for each sensitive item in G
8. if (@s|H[s]·p > remaining) then
9. remaining ← remaining - |G|
10. else
11. Roll back G and continue
12. end while
13. Output remaining transactions as a single group

matrices, while transaction database matrix is unsymmetric. Given an unsymmetric matrix

M , one good solution is performing RCM over A=M×MT and then applying the output

permutation to M . Intuitively each elements Aij corresponds to number of common items

between row i and j in M .

In the second phase each sensitive transaction will be grouped with non-sensitive trans-

actions or sensitive ones with different sensitive items. A greedy algorithm based on the

“one-occurrence-per-group” heuristic, called CAHD (Correlation-Aware Anonymization of

High-dimensional Data), was proposed in [32] which allows only one occurrence of each

sensitive item in a group. Algorithm 2.2, shows the CAHD group formation heuristic.

Given a sensitive transaction t, it forms a candidate list CL(t) by adding all transactions

in a window of size 2αp−1 centered at t, such that those transactions are either non-sensitive

or has different sensitive item, and α is a system parameter. Then, out of the transactions

in CL(t), the p− 1 of them that have the largest number of non-sensitive items in common

with t are chosen to form the anonymized group with t. The process continues with the next

sensitive transaction in the order, after the previous selected transactions are then removed

from D.

A histogram of the number of remaining occurrences for each sensitive item is also used

to ensure forming a group will not lead to having remaining set of transactions that can not

CHAPTER 2. RELATED WORK 21

Figure 2.1: Applying band matrix method on sample transaction log

be anonymized. If such case happened, the current group is rolled back and a new group

formation is attempted starting from the next sensitive transaction in the sequence.

Example 2.4.1 Figure 2.1(a) shows the original matrix with the shaded area for sensitive

items. Figure 2.1(b) shows the result of band matrix formation with respect to non-sensitive

attributes. Figure 2.1(c) shows two groups that have privacy degree 2. From the original

data, we can infer that every person who bought “Beef” but not “Milk” have also bought a

“Pregnancy test” (with 100% certainty). However from the anonymized data, we can only

say that half of such people have bought a “Pregnancy test”.

2.5 km-Anonymity

To address the record linkage attacks in transaction data, authors in [58] proposed the km-

anonymity approach which assumes that any subset of items can be used as background

knowledge. It removes record linkage attacks by generalizing items with respect to an item

taxonomy.

Unlike coherence and band matrix approach, data is not distinguished as sensitive and

non-sensitive in this method, but it is considered both as potential quasi-identifiers and

potential sensitive data. In the km-anonymity method, like the coherence method, we

assume that an adversary knows at most m number of items as background knowledge.

Definition 2.5.1 (km-anonymity) A transaction database D is km-anonymous if an ad-

versary who knows at most m items of a transaction t∈D, can not use this background

knowledge to identify less than k transactions in D.

In other words, for any set of up to m items, there should be at least k transactions

that contain those items in the published database. We can consider this privacy notion as

CHAPTER 2. RELATED WORK 22

Figure 2.2: A sample cut in domain generalization

an special case of (h; k; p)-coherence with h = 100% and p = m, meaning that a subset of

items that causes violation of km-anonymity is a mole under the coherence model.

The anonymization method in [58] applies generalization, in contrast to the suppression

operation for coherence. This generalization follows the global recoding scheme in which

when a child node is generalized to its parent, all its sibling nodes will also be generalized

to their parent node, and the generalization process is applies to all transactions in the

database. Each generalization corresponds to a possible horizontal cut of the taxonomy

tree.

Example 2.5.1 Figure 2.2 shows a generalization rule {Apple,Orange,Banana} → Fruit

and the cut is shown by a dashed line. A transaction <Orange, Beef, Cheese> under this

rule, will be generalized to <Fruit, Beef, Cheese>.

The information loss of a cut is measured using the Normalized Certainty Penalty (NCP)

loss metric proposed in [66]. The NCP captures the degree of generalization of an item i,

by considering the the percentage of leaf nodes under i in the item taxonomy. The NCP for

the whole database weights the information loss of each generalized item according to the

ratio of the item appearances that are affected to the total items in the database. Therefore,

if a cut c’ is more general than the cut c, the information loss of c’ will be larger than the

one for c.

If the hierarchy cut c results in a km-anonymous database, then all its more general cuts

c’, also result in a km-anonymous database. This is called the monotonicity property of cuts

[58]. The km-anonymization problem is to find a km-anonymous transformation with the

minimum information loss. Based on the monotonicity property and in order to prevent

higher information loss, as soon as we find a cut that satisfies the km-anonymity constraint,

we do not have to find a more general cut.

Generating the set of all possible cuts and checking the anonymity violation for every

subset of up to m items is not scalable. [58] presented Optimal Anonymization (OA) that

CHAPTER 2. RELATED WORK 23

Algorithm 2.3 Apriori-based Anonymization

Input: Transaction database: D, Domain of items: I, Anonymity parameters: k, m
Output: km-anonymous transaction database: D

1. Initialize GenRules to the empty set
2. for i = 1 to m do
3. Initialize a new count-tree
4. for all t∈D do
5. Extend t according to GenRules
6. Add all i-subsets of extended t to count-tree
7. end for
8. Run DA on count-tree for m =i and update GenRules
9. end for

explores in a bottom-up fashion all possible cuts and picks the best one. Since the number of

such subsets can be very large, optimal solution is not applicable for large, realistic problems.

Therefore, authors proposed a greedy algorithm to find a good but not an optimal cut called

Apriori anonymization (AA) which is based on the apriori principle: if an itemset J of size

i, violates the anonymity requirement, then each superset of J also violates the anonymity

requirement.

In the Apriori anonymization, the space of itemsets is explored in an apriori, bottom-up

scheme. Meaning that before checking if `-itemsets (` = 2,. . ., m) violates the anonymity

requirement, we first eliminate the possible anonymity violation caused by (`-1)-itemsets.

Following this idea, there will be a great reduction in the number of itemsets that must be

checked at a higher level, since detailed items could have been generalized. Algorithm 2.3,

shows the Apriori-based anonymization.

The algorithm first initializes the set of generalization rules GenRules to the empty

set. A count-tree data structure keeps track of all i-itemsets and their support in the ith

iteration and paths from root to leaf in the count-tree corresponds to a i-itemset. Each

transaction t∈D will be generalized according to the generalization rules GenRules (line

5). Next, all i-subsets of each generalized transaction of t, will be added to a new count-

tree and the support of each i-subset will be increased (line 6). Then all i-subsets with

a support less than k and a set of generalization rules to eliminate such i-subsets will be

found. This is done using the Direct Anonymization (DA) algorithm [58] on the count-tree.

DA is performed directly on i-itemsets which violates the anonymity requirement (line 8).

CHAPTER 2. RELATED WORK 24

All i-subsets of items with support less than k will be removed after m iterations and the

final set of generalization rules in GenRules will be used to generalize transactions in D and

make it km-anonymous.

2.6 Transactional k-Anonymity

In both (h; k; p)-coherence and km-anonymity methods, we assume that the background

knowledge of an adversary is bounded by a given parameter. This assumption has two

limitations. Firstly, in many cases it is not be possible to determine this bound in advance.

Secondly, (h; k; p)-coherence and km-anonymity can ensure k-anonymity privacy by setting p

or m to the maximum transaction length in the database, only if all background knowledge of

the attacker is limited to the presence of items. The following example shows if background

knowledge is on the “absence” of items and not the “presence” of items, the attacker may

exclude transactions using this knowledge and focus on fewer than k transactions. The

k-anonymity approach in [34], which we refer to it as Partition, avoids this problem since

all transactions in the same equivalence class are identical.

Example 2.6.1 An adversary knows that Bob has bought “Orange” and “Chicken”, but has

not bought “Milk”. Suppose that three transactions contain “Orange”, and “Chicken”, but

only two of them contain “Milk”. The adversary can exclude the two transaction containing

“Milk” and link the remaining transaction to Bob. Here, km privacy with k = 2 and m =

3 is violated, even by setting m to the maximum transaction length.

As we also briefly explained in section 1.2, the Partition algorithm [34] addresses this

issue by making each transaction indistinguishable from k-1 other transactions. Authors

extended the original k-anonymity for relational data in [54] and [57], to the transactional

k-anonymity for “set-valued data”, in which a set of values are associated with an individual.

This notion prevents linking attacks in the sense that the probability of linking an individual

to a specific transaction is no more than 1
k .

Definition 2.6.1 (Transactional k-anonymity) A transaction database D is k-anonymous

if every transaction in D occurs at least k times. A transaction database D’ is a k-anonymization

of D, if D’ is k-anonymous and is generalized from D using a taxonomy.

CHAPTER 2. RELATED WORK 25

Algorithm 2.4 Partition: Top-down, Local Generalization

Input: Transaction database: D, Anonymity parameter: k
Output: k-anonymous transaction database: D
Anonymize(partition)

1. if no further drill down possible for partition then
2. return and put partition in global list of returned partitions
3. else
4. expandNode ← pickNode(partition)
5. for each transaction t in partition do
6. Distribute t to a proper subpartition induced by expandNode
7. end for
8. Merge small subpartitions
9. for each subpartition do
10. Anonymize(subpartition)
11. end for
12. end if

Authors in [34] showed that every database which satisfies k-anonymity, also satisfies

km-anonymity for all m values. However, there exists a database D which satisfies km-

anonymity for any m, but not k-anonymity. The Partition method [34], which is a general-

ization approach to k-anonymization, partitions transactions into equivalence classes where

all transactions in the same equivalence class are exactly identical. In this method, if several

items are generalized to the same item, only one occurrence of the generalized item will be

kept in the generalized transaction. Consequently, the information loss not only comes from

item generalization, but also comes from eliminating duplicate generalized item.

The Partition method is basically the extended version of the top-down Mondrian [41]

partition algorithm originally proposed for relational data. As shown in algorithm 2.4, we

starts with the single partition containing all transactions with all items generalized to the

root item. Since in this method we do not allow duplication, all transactions at this step

contains only the single root item. Then it recursively splits a partition by specializing

a node in the taxonomy for all the transactions in the partition. There is a criterion to

choose which node to specialize. Then all the transactions in the partition with the same

specialized item are distributed to the same sub-partition. At the end of distribution, some

small sub-partitions with less than k transactions are merged into a special leftover sub-

partition, and some large transactions with more than k transactions will be re-distributed

CHAPTER 2. RELATED WORK 26

Figure 2.3: Domain generalization hierarchy

to the leftover partition to make sure that the leftover partition has at least k transactions.

This partitioning stops in the case of violating k-anonymity condition.

Unlike the Apriori anonymization [58], the Partition approach follows a local recoding

scheme since specialization is done independently for each partition.

2.7 Heuristic generalization with heuristic suppression

A very recent work also studied transaction data anonymization using suppression and

generalization [44]. Authors applied full subtree generalization technique, meaning that a

generalization solution Cut is defined by a cut on a taxonomy tree with exactly one item on

every root-to-leaf path. They also applied total item suppression technique, which removes

some items of Cut from all transactions. The set of such items to be eliminated is called a

suppression scenario denoted by SS. The loss metric is the aggregate of both generalization

and suppression defined as cost(Cut,SS) = costG(Cut) + costS(SS).

Authors were motivated by the limitations of the km-anonymity, and proposed to inte-

grate the global generalization technique in [58] with the total item suppression technique

in [67] for enforcing km-anonymity. The full subtree generalization in [58] can suffer from

excessive distortion in the presence of outliers. For example consider the taxonomy in figure

2.3, to achieve 2∞-anonymity by the approach in [58] for transaction database in the first

column of table 2.2, all items must be generalized to the root item, T , due to the outlier,

{e, i}.
In such cases, suppressing a few outlier items will reduce information loss caused by high

amount of generalization. For example, the second column of table 2.2 shows that item i is

suppressed by the approach in [44]. The anonymized data is derived in two steps: first the

CHAPTER 2. RELATED WORK 27

TID Transaction database D 2∞-anonymous database

t1 b, c, d P

t2 a, f, g P, f, g

t3 d, f, y, z P, f,M

t4 c, d, f, x P, f,M

t5 a, b, c, f, g P, f, g

t6 e, i e, ∗
t7 e e

t8 i ∗

Table 2.2: Sample database of life styles and illnesses

items are generalized with respect to the Cut and then items in SS are suppressed. The

following example is borrowed from [44]

Example 2.7.1 Consider the transaction database D in the first column of table 2.2, and

the taxonomy in Figure 2.3. To enforce 2∞-anonymity, D is first generalized according

to the cut {P, f, g,M, e, i}. Since the number of transactions in the generalized data that

support {e, i} is more than 2, there is a privacy threat. If we suppress item i, there would

be no more privacy threat.

Since the number of cuts for a taxonomy is exponential in the number of items, enumer-

ating suppression scenarios for a cut is also intractable. Consequently, authors provided a

heuristic approach to address this issues. The outer loop of HgHs algorithm enumerates

cuts by a top-down greedy search of a lattice of all possible cuts and the inner loop greedily

searches the suppression scenario enumeration tree, which is built per cut.

2.8 Other works

Two very recent works [22], and [13], also studied query/transaction anonymization. Au-

thors in [13] provided a transaction anonymization approach which result in an inference-

proof version for preventing the association of individuals to sensitive items, while truthful

association rules can still be derived. Like the works in [32], and [67], they distinguish

between public (non-sensitive) and private (sensitive) items.

They proposed the privacy notion ρ-uncertainty which ensures that the confidence of

CHAPTER 2. RELATED WORK 28

any sensitive association rule is at most ρ. Formally, a ρ-uncertain transaction set D does

not allow an attacker knowing any subset of a transaction t∈D to infer a sensitive item

in t with confidence higher than ρ. To meet so, they applied a technique that combines

generalization and suppression.

The anonymization method in [22], clusters the queries and then replace the original

queries by the centroids of the corresponding clusters considering the semantics of the

queries. Their semantic microaggregation uses the Open Directory Project (ODP)1. Authors

argued that creating a cluster with queries from users with different “interests” can result in

useless protected logs and thus queries of users with common interests between them should

be grouped in the same cluster.

They used ODP to compute the semantic distances between users and partition queries

into groups of k users with similar interests. In the aggregation phase, they compute a new

user as the representative (or centroid) of the cluster, which summarizes the queries of all

the users of the cluster. The query items for the centroid are selected by a probabilistic

approach based on the contribution of the user with respect to number of transactions in

the cluster.

2.9 Discussion

In this thesis we model web query logs as unstructured transaction data and therefore

focus on query-log anonymization from transaction database anonymization point of view.

Among the previous works the coherence approach can both prevent record linkage attacks

and attribute linkage attacks. Band matrix and [13] approach can prevent attribute linkage

attack, and both km-anonymization and k-anonymization prevent record linkage attack.

The adversary’s background knowledge is bounded in coherence and km-anonymization,

while in band matrix and k-anonymization we do not limit the attacker’s knowledge. A

security issue about bounded knowledge in coherence and km-anonymization was explained

by [34] that if background knowledge is on the “absence” of items, the attacker may exclude

transactions using this knowledge and focus on fewer than k transactions. The HgHs

approach also has this privacy issue.

Semantic microaggregation technique [22] needs a costly computation of a classification

1http://www.dmoz.org/

CHAPTER 2. RELATED WORK 29

matrix (containing the number of queries for each user and category at level in ODP hi-

erarchy) and a incidence matrix (the addition of all coincidences between two users in the

classification matrix). Also computation of the centroid for the clusters does not guarantee

a minimum data distortion. They did not consider item generalization and its cost in their

model.

Both km-anonymization and k-anonymization, do not distinguish data as sensitive and

non-sensitive but as potential QI and SA. In fact, determining which items are sensitive is

not always possible in many real applications considering huge size of the item universe.

The coherence approach and km-anonymity approach guarantees truthful analysis w.r.t

the original data. If the transaction database is too sparse, then the item suppression

of the coherence may cause a large information loss. The item generalization of the km-

anonymization approach and the transactional k-anonymity approach could work better if

the data is sparse and the taxonomy is “slim” and “tall”, but have a large information loss

if the taxonomy is “short” and “wide”.

The local generalization of transactional k-anonymity approach has a smaller information

loss than global generalization, however, the anonymized data does not have the value

exclusiveness, a property assumed by most existing data mining algorithms. This means

that either existing algorithms must be modified or new algorithms must be designed to

analyze such data.

All the previous work in transaction data anonymization do not deal with item dupli-

cation meaning that the frequency of a term in a query can not be preserved well and will

affect utilities such as count query results. The information loss of Partition algorithm

(k-anonymity method), can be high due to item generalization, and eliminating duplicate

generalized item. The latter reason of information loss was not measured by an usual in-

formation loss metric for relational data where no attribute value will be eliminated by

generalization.

Chapter 3

Problem Statements

This section defines our problems. We use the terms “transaction” and “item”. In the

context of web query logs, a transaction corresponds to a query and an item corresponds to

a query term.

3.1 Item Generalization

We assume that there is a taxonomy tree T over the item universe I, with the parent being

more general than all children. This assumption was also made in the literature [54], [57],

[34], [58]. For example, WordNet [25] could be a source to obtain the item taxonomy.

The process of generalization refers to replacing a special item with a more general item

(i.e., an ancestor), and the process of specialization refers to the exact reverse operation. In

this work, an item is its own ancestor and descendant.

Definition 3.1.1 (Transactions and generalization) A transaction is a bag of items

from I (thus allowing duplicate items). A transaction t’ is a Generalized Transaction of a

transaction t, if for every item i’ ∈ t’ there exists one “distinct” item i ∈ t such that i’ is

an ancestor of i. In this case, t is the Specialized Transaction of t’.

The above transaction model is different from [34] in several ways. First, it allows du-

plicate items in a transaction and in its generalized transaction. For example if t’=<Fruit,

Fruit> is a generalized transaction of t, t’ represents two leaf items under Fruit in t. Sec-

ond, it allows items in a transaction to be on the same path in the item taxonomy, in which

case, each item represents a distinct leaf item. For example, we interpret the transaction

30

CHAPTER 3. PROBLEM STATEMENTS 31

<Fruit, Food> as: Fruit represents a leaf item under Fruit and Food represents a leaf

item under Food that is not represented by Fruit.

Also, if t’ is a generalized transaction of t, each item i’∈t’ represents (the generalization

of) one “distinct” item i ∈ t. We say that an item i ∈ t is suppressed in t’ if no i’∈t’
represents the item i. Hence, our generalization also models item suppression.

Example 3.1.1 Consider the taxonomy tree in Figure 1.3 and the transaction t=<Orange,

Beef>. All possible generalized transactions of t are <>, <Orange>, <Beef>, <Orange,

Beef>, <Fruit, Beef>, <Orange, Meat>, <Fruit, Meat>, <Fruit>, <Meat>, <Food>,

<Orange, Food>, <Food, Beef>, <Fruit, Food>, <Food, Meat>, and <Food, Food>.

For t=<>, no item in t represents Orange or Beef , meaning that both of them are

suppressed. For t=<Fruit>, Fruit represents (the generalization) of some item under the

category Fruit (i.e., Orange), and Beef is suppressed. For t=<Food>, Food represents

one item under Food, therefore, one of Orange and Beef in t is suppressed. For t=<Food,

Food>, each occurrence of Food represents a different item in t.

3.2 Least Common Generalization

The main idea of transaction anonymization is to build groups of identical transactions

through generalization. We introduce the following notion to capture such generalizations.

Definition 3.2.1 (Least Common Generalization - LCG) The Least Common Gen-

eralization of a set of transactions S, denoted by LCG(S), is a common generalized transac-

tion for all of the transactions in S, and there is no other more special common generalized

transaction.

We should note that although an empty transaction <>, is the common generalization

of any set of transactions S, but it is not the least common generalization for transactions

in S since at least the transaction with item root, is more specialized than <>. Bellow we

give some examples for such least common generalization.

Example 3.2.1 Consider the taxonomy tree in Figure 1.3. Let S1 = {<Orange, Beef>,

<Apple, Chicken, Beef>}, LCG(S1) = <Fruit, Beef>. LCG(S1) cannot be <Fruit,

Meat> since there is a more specialized common transaction <Fruit, Beef>.

CHAPTER 3. PROBLEM STATEMENTS 32

For S2 = {<Orange, Milk>, <Apple, Cheese, Butter>}, LCG(S2)=<Fruit, Dairy>.

Dairy represents Milk in the first transaction and represents one of Cheese and Butter in

the second transaction. Thus one of Cheese or Butter is considered as a suppressed item.

For S3 = {<Orange, Apple>, <Orange, Banana, Milk>, <Banana, Apple, Beef>},
LCG(S3)=<Fruit, Fruit>, which represents that all three transactions contain at least two

items under Fruit. Milk and Beef are suppressed items.

For S4 = {<Orange, Beef>, <Apple, Milk>}, LCG(S4) = <Fruit, Food>, where

Food represents Beef in the first transaction and Milk in the second transaction. Here

LCG contains both a parent and a child item.

The following properties follow from Definition 3.2.1.

Property 1 LCG(S) is unique for a given S.

Property 2 The length of LCG(S) (i.e. the number of items in it) is equal to the length

of the shortest transaction in S.

Proof : For property 1, we apply proof by contradiction: If two different transactions A and

B are LCG(S), by definition each can not be specialized more into a common transaction

for transactions in S. Now if A and B contain different items this means there are items

with more than one parent which is contrary to fact and thus A and B are the same. As a

proof for property 2, let t’ be the shortest transaction in S. Each item in LCG(S) should

represent a “distinct” item in each transaction in S, thus |LCG(S)| can not exceed the

length of t’. Also LCG(S) can have multiple root item to represent some items in t’ instead

of item suppression. As we discussed earlier transaction with item root, is more specialized

than <>. Consequently |LCG(S)| is equal to the size of t’. �

Various metrics have been proposed in the literature to measure the quality of gener-

alized data including Classification Metric (CM), Generalized Loss Metric (LM) [35], and

Discernibility Metric (DM) [9]. In this work we use Generalized Loss Metric to measure

item generalization distortion. The similar notion of NCP (Normalized Centrality Penalty)

has also been employed for set-valued data [58] and [34].

Definition 3.2.2 (Loss Metric - LM) Let M be the total number of leaf nodes in the

taxonomy tree T , and let Mp be the number of leaf nodes in the subtree rooted at a node p.

The Loss Metric for an item p, denoted by LM(p), is defined as (Mp−1)
(M−1) . For the root item p,

CHAPTER 3. PROBLEM STATEMENTS 33

LM(p)=1. In words, LM captures the degree of generalization of an item by the percentage

of the leaf items in the domain that are indistinguishable from it after the generalization.

Example 3.2.2 Considering taxonomy in Figure 1.3, LM(Fruit)=2
7 .

Suppose that we generalize every transaction in a subset of transactions S to a common

generalized transaction t, and we want to measure the distortion of this generalization.

Recall that every item in t represents one distinct item in each transaction in S (Definition

3.1.1). Therefore, each item in t generalizes exactly |S| items, one from each transaction in

S, where |S| is the number of transactions in S. The remaining items in a transaction (that

are not generalized by any item in t) are suppressed items. Therefore, the distortion of this

generalization is the sum of the distortion for generalized items, |S|×
∑

i∈tLM(i), and the

distortion for suppressed items. For each suppressed item, we charge the same distortion as

if it is generalized to the root item, i.e., 1.

Definition 3.2.3 (Group Generalization Distortion - GGD) Suppose that we gener-

alize every transaction in a set of transactions S to a common generalized transaction

t. The Group Generalization Distortion of the generalization is defined as GGD(S, t) =

|S|×
∑

i∈tLM(i) + Ns, where Ns is the number of occurrences of suppressed items.

To minimize the distortion, we shall generalize S to the least common generalization

LCG(S), which has the distortion GGD(S, LCG(S)).

Example 3.2.3 Consider the taxonomy in Figure 1.3 and S1={<Orange, Beef>, <Apple,

Chicken, Beef>}. We have LCG(S1) = <Fruit, Beef>. LM(Fruit)=2
7 , LM(Beef)=0, and

|S1|=2. Since Chicken is the only suppressed item, Ns=1. Thus GGD(S1, LCG(S1)) =

2×(27+0) + 1 = 11
7 .

3.3 Problem Definition

We adopt the transactional k-anonymity in [34] as our privacy notion. A transaction

database D is k-anonymous if for every transaction in D, there are at least k-1 other iden-

tical transactions in D. Therefore, for a k-anonymous D, if one transaction is linked to an

individual, so are at least k-1 other transactions, so the adversary has at most 1
k probability

to link a specific transaction to the individual.

For example, the last column in Table 1.1 is a 2-anonymous transaction database.

CHAPTER 3. PROBLEM STATEMENTS 34

Definition 3.3.1 (Transaction k-anonymization problem) Given a transaction database

D, a taxonomy of items, and a privacy parameter k, we want to find the clustering C={S1,. . . ,Sn}
of D such that S1,. . . ,Sn are pair-wise disjoint subsets of D with each Si containing at least

k transactions from D, and
∑|C|

i=1 GGD(Si, LCG(Si)) is minimized.

Let C={S1,. . . ,Sn} be a solution to the above anonymization problem. A k-anonymized

database ofD can be obtained by generalizing every transaction in Si to LCG(Si), i=1,. . . ,n.

Theorem 3.3.2 Transactional k-anonymization problem is NP-hard.

Sketch of Proof : Optimal k-anonymity by suppressing certain number of cells is NP-hard

for k≥3, using a reduction from the Edge Partition Into Triangles problem [4]. Our problem

deals with both generalization and suppresion, thus if we only apply the suppression and

turn off the generalization, it would turn into the work in [4] with the same loss metric

(number of eliminated items). �

Chapter 4

Clustering Approach

In this chapter we present our algorithm Clump [48] for solving the problem defined in

Definition 3.3.1. In general, the problem of finding optimal k-anonymization for k>3 is

NP -hard [47], [4], and so is our problem. Thus, we focus on an efficient heuristic solution to

this problem and evaluate its effectiveness empirically. In this section, we assume that the

functions LCG(S) and GGD(S, LCG(S)) are given. We will discuss the detail of computing

these functions in Chapter 5.

The basic idea of our algorithm is to group transactions in order to reduce
∑|C|

i=1 GGD(Si,

LCG(Si)), subject to the constraint that Si contains at least k transactions. Recall that

GGD(S, LCG(S)) = |S|×
∑

i∈LCG(S)LM(i) + Ns, and from Property 2, LCG(S) has the

length equal to the minimum length of transactions in S. All “extra” items in a transaction

that do not have a generalization in LCG(S) are suppressed and contributes to the suppres-

sion distortion Ns. Since the distortion of suppressing an item is more than the distortion

of generalizing an item, one heuristic is to consider length of transactions in the grouping

process in order to minimize the suppression distortion Ns. We use this idea in selecting

initial groups as we discuss later.

4.1 Transaction Clustering

Based on the above idea, we present our transaction clustering algorithm Clump [48] (Al-

gorithm 4.5). Our clustering is similar to some general clustering algorithms, like k-means,

which consider predetermined number of clusters, but is different considering the constraint

of the number of members within each cluster.

35

CHAPTER 4. CLUSTERING APPROACH 36

The standard k-means uses an iterative refinement technique which alternate between

two steps: assignment step (assigning data points to the cluster with the nearest mean)

and update step (calculating the new means in clusters). This process is supposed to

stop when the assignments no longer change. This algorithm is, however, not suitable

for our clustering purpose. Consider taxonomy in Figure 1.3 and t1=<Orange,Beef>

as an initial member of a cluster. Two transactions t2=<Orange> and t3=<Beef> are

each close to the transaction t1 (in term of small GGD) i.e, LCG({t1}∪{t2})=<Orange>,

LCG({t1}∪{t3})=<Beef> and GGD of both is 1. However t2 and t3 are not close to each

other as LCG({t1}∪{t2})=<Food> and GGD is 2. In such cases if we assign t2 and t3 to

the cluster containing t1, LCG of the cluster would be <Food> with GGD equal to 3+1=4.

This example shows that k-means is not suitable since the update step which calculates the

new mean for a cluster, is done after assigning transactions to the cluster with minimum

distance with the cluster mean (in our work LCG). Also reassigning the membership can

be very time consuming which is not acceptable considering very large databases.

Let D be the input transaction database and let n=b |D|k c be the number of clusters,

where |D| denotes the number of transactions in D:

Step 1 (line 2-5): We arrange the transactions in D in the decreasing order of the trans-

action length, and we initialize the ith cluster Si, i=1,. . . ,n, with the transaction at the

position (i-1)k+1 in the ordered list. Since earlier transactions in the arranged order have

longer length, earlier clusters in this order tend to contain longer transactions.

For the comparison purpose, we also implement other transaction assignment orders,

such as random assignment order and the increasing transaction length order (i.e., the

exact reverse order of the above algorithm). Our experiments found that the decreasing

order by transaction length produced better results.

Step 2 (line 6-12): For each remaining transaction ti in the arranged order, we assign ti

to the cluster Sj such that |Sj |<k and GGD(Sj∪{ti}, LCG(Sj∪{ti})) is minimized. Since

this step requires computing GGD(Sj∪{ti}, LCG(Sj∪{ti})), for speed up we can restrict

the search to r clusters with size less than k, where r is a pruning parameter.

One possible way is to search among r clusters with respect to their LCG length. Finding

r clusters with minimum difference between LCG size and transaction size, again imposes

O(n) complexity overhead to our algorithm. Also our greedy selection approach does not

guarantee that we come up with a globally optimal choice. We can select different r clusters

considering different ideas. In our work we only consider evaluating with the first r clusters

CHAPTER 4. CLUSTERING APPROACH 37

Algorithm 4.5 Clump: Transaction Clustering

Input: Transaction database: D, Taxonomy: T , Anonymity parameter:k, n=b |D|k c
Output: k-anonymous transaction database: D∗

1. Initialize Si ← ∅ for i=1, . . . ,|D|;
2. Sort the transactions in D in the descending order of length
3. for i = 1 to n do
4. assign the transaction at the position (i-1)k+1 to Si
5. end for
6. while |Sj | < k for some Sj do
7. for each unassigned transaction ti in sorted order do
8. Let Sj be the cluster such that |Sj |<k

and GGD(Sj∪{ti},LCG(Sj∪{ti})) is minimized
9. LCG(Sj) ← LCG(Sj∪{ti})
10. Sj ← Sj∪{ti}
11. end for
12. end while
13. for each unassigned transaction ti do
14. Let Sj be the cluster such that GGD(Sj∪{ti},LCG(Sj∪{ti})) is minimized
15. LCG(Sj) ← LCG(Sj∪{ti})
16. Sj ← Sj∪{ti}
17. end for
18. return LCG(Si) and Si, i=1, . . . , n

Sj with |Sj |<k, according to their initially sorted order. This order implies that longer

transactions tend to be assigned to earlier clusters since the initial cluster assignments in

step 1 was based on transaction length. Our insight is that after some transactions were

assigned to the earlier clusters, the capacity of those early clusters will reach to k and thus

we do not consider them anymore in step 2.

Step 3 (line 13-17): after all of the n clusters contain k number of transactions, for each

remaining transaction ti in the sorted order, we assign it to the cluster Sj with the minimum

GGD(Sj∪{ti}, LCG(Sj∪{ti})).
The major work of the algorithm is computing GGD(Sj∪{ti}, LCG(Sj∪{ti})), which

requires the LCG(Sj∪{ti}). We will present an algorithm for computing LCG(Si) in time

O(|T |×|Si|) in the next chapter, where |T | is the size of the taxonomy tree T and |Si| is the

number of transactions in Si. It is important to note that each cluster Si has a size at most

2k-1. Since k is small, LCG can be computed efficiently. In fact, the next lemma says that

CHAPTER 4. CLUSTERING APPROACH 38

LCG(Sj∪{ti}) can be computed incrementally from LCG(Sj).

Lemma 4.1.1 Let t be a transaction, S be a subset of transactions, and S’={LCG(S),t}
consist of two transactions. Then LCG(S∪{t}) =LCG(S’).

Proof : First note that LCG(S’) is a common generalization of all transactions in S∪{t}
because LCG(S) generalizes all transactions in S. Suppose that there is a more special

common generalization g of S∪{t}. g is also a common generalization of S’, contradicting

that LCG(S’) is the LCG of S’ because g is more special than LCG(S’). Therefore, such

g does not exist. This shows that LCG(S’) is the LCG of S∪{t}. �
In words, the lemma says that the LCG of Sj∪{ti} is equal to the LCG of two transac-

tions, LCG(Sj) and ti. Thus if we maintain LCG(Sj) for each cluster Sj , the computation

of LCG(Sj∪{t}) involves only two transactions and takes the time O(|T |).

Theorem 4.1.2 For a database D and a taxonomy tree T, Algorithm 4.1 runs in time

O(|D|×r×|T|), where r is the pruning parameter used by the algorithm.

Proof : We apply CountingSort [38] which takes O(|D|) time to sort all transactions in

D by their length. Subsequently, the algorithm examines each transaction once to insert

it to a cluster. To insert a transaction ti, the algorithm examines r clusters and, for each

cluster Sj , it computes LCG(Sj∪{ti}) and GGD(Sj∪{ti}, LCG(Sj∪{ti})), which takes

O(|T |×|Sj |) according to Theorem 5.1.1 in Chapter 5, where |Sj | is the number of transac-

tions in Sj . With the incremental computing of LCG(Sj∪{ti}) in Lemma 4.1.1, computing

LCG(Sj∪{ti}) takes time proportional to |T |. Therefore the algorithm overally runs is in

O(|D|×r×|T |). �
Sine |T | and r are constants, the algorithm takes a linear time in the database size |D|.

Chapter 5

Computing LCG

In the Chapter 4, we make use of the functions LCG(S) and GGD(S, LCG(S)) to deter-

mine the cluster for a transaction. Since these functions are frequently called, an efficient

implementation is crucial. In this chapter, we present a linear time algorithm for computing

LCG and GGD. We focus on LCG because computing GGD is straightforward once LCG

is found.

Our insight is that creating the LCG of a set of transactions has a lower cost if we

apply a bottom-up generalization fashion compared to a top-down specialization approach.

Intuitively, we try to find a common ancestor for each item in every transactions.

5.1 Bottom-Up Item Generalization

We present a bottom-up item generalization (BUIG) algorithm to build LCG(S) for a set S

of transactions. First, we initialize LCG(S) with the empty set of items. Then, we examine

the items in the taxonomy tree T in the bottom-up fashion: examine a parent only after

examining all its children. For the current item i examined, if i is an ancestor of some

item in every transaction in S, we add i to LCG(S). In this case, i is the least common

generalization of these items. If i is not an ancestor of any item in some transaction in S,

we need to examine the parent of i.

This algorithm is described in Algorithm 2. Let S= <t1, . . . ,tm>. For an item i, we use

an array Ri[1..m] to store the number of items in a transaction of which i is an ancestor.

Specifically, Ri[j] is set to the number of items in the transaction tj of which i is an ancestor.

MinCount(Ri) returns the minimum entry in Ri, i.e., minj=1..m Ri[j]. If MinCount(Ri)>0,

39

CHAPTER 5. COMPUTING LCG 40

i is an ancestor of at least MinCount(Ri) distinct items in every transaction in S, so we

will add MinCount(Ri) copies of the item i to LCG(S).

Algorithm 2 is a call to the recursive procedure BUIG(root) with the root of T . Line

1-6 in the main procedure initializes LCG and Ri. Consider BUIG(i) for an item i. If i is

a leaf in T , it returns. Otherwise, line 4-9 examines recursively the children i’ of i, by the

call BUIG(i’). On return from BUIG(i’), if MinCount(Ri′)>0, i’ is an ancestor of at least

MinCount(Ri′) items in every transaction in S, so MinCount(Ri′) copies of i’ are added to

LCG. If MinCount(Ri′)=0, i’ does not represent any item for some transaction in S, so the

examination moves up to the parent item i; in this case, line 8 computes Ri by aggregating

Ri′ for all child items i’ such that MinCount(Ri′)=0. Note that, by not aggregating Ri′

with MinCount(Ri′)>0, we stop generalizing such child items. If i is the root, line 10-11

adds MinTranSize(S)-|LCG| copies of the root item to LCG, where MinTranSize(S)

returns the minimum transaction length of S. This step ensures that LCG has the same

length as the minimum transaction length of S (Property 2).

Example 5.1.1 Let S={<Orange, Apple>, <Orange, Banana, Milk>, <Banana, Apple,

Beef>} and consider the taxonomy in Figure 1.3. BUIG(Food) recurs until reaching leaf

items. Then the processing proceeds bottom-up as depicted in Figure 5.1. Next to each item

i, we show o:Ri, where o is the sequence order in which i is examined and Ri stores the

number of items in each transaction of which i is an ancestor.

The first three items examined are Apple, Orange, and Banana. RApple = [1,0,1]

(since Apple appeared in transactions 1 and 3), ROrange = [1,1,0], and RBanana = [0,1,1].

MinCount(Ri)=0 for these items i. Next, the parent Fruit is examined and RFruit = RApple

+ ROrange+ RBanana=[2,2,2]. With MinCount(RFruit) = 2, two copies of Fruit are added

to LCG, i.e., LCG(S)=<Fruit, Fruit> and we stop generalizing Fruit.

A similar processing applies to the sub-trees at Meat and Dairy, but no item i is added

to LCG because MinCount(Ri)=0. Finally, at the root Food, RFood = RMeat + RDairy =

[0,1,1]. Note that we do not add RFruit because MinCount(RFruit)>2, which signals that the

generalization has stopped at Fruit. Since |LCG|=MinTranSize(S), no Food is added to LCG.

So the final LCG(S)=<Fruit, Fruit>. As mentioned in Example 2, the two occurrences of

Fruit indicate that all three transactions contain at least two items under Fruit.

Theorem 5.1.1 Given a set of transactions S and a taxonomy tree T of items, BUIG

CHAPTER 5. COMPUTING LCG 41

Figure 5.1: BUIG’s processing order

Algorithm 5.6 Bottom-up Item Generalization

Input: Taxonomy: T , Set of m transactions: S = < t1, . . . , tm >
Output: LCG(S);

1. LCG← ∅
2. for each item i∈T do
3. for each tj∈S do
4. if tj contains i then Ri[j] ← 1 else Ri[j] ← 0
5. end for
6. end for
7. BUIG(root);
8. return LCG;

BUIG(i):
1. if i is a leaf in T then
2. return
3. else
4. for each child i’ of i do
5. BUIG(i’);
6. if MinCount(Ri′)>0 then
7. Add MinCount(Ri′) copies of i’ to LCG
8. else Ri ← Ri +Ri′ /* examining the parent i */
9. end for
10. if i = root then
11. Add MinTranSize(S)-|LCG| copies of root to LCG
12. return

CHAPTER 5. COMPUTING LCG 42

produces LCG(S) and takes time O(|T|×|S|), where |S| is the number of transactions in S

and |T| is the number of items in taxonomy tree T.

Proof : First, BUIG generalizes transactions by examining the items in T in the bottom-up

order and stops generalization whenever encountering an item that is a common ancestor

of some unrepresented item in every transaction in S. This property ensures that each item

added to LCG is the earliest possible common ancestor of some unrepresented item in every

transaction. Second, BUIG visits each node in T once, and at each node i, it examines Ri′

and Rj of size |S|, where i’ is a child of i. So the complexity is O(|T |×|S|). �

5.2 A Complete Example

Let us illustrate the complete run of Clump using the motivating example in Section 1.1.

We reproduce the five transactions t1 to t5 in Table 5.1, arranged by the descending order

of transaction length. Let k=2. First, the number of clusters is m = b52c= 2, and the first

cluster S1 is initialized to the first transaction t1 and the second cluster S2 is initialized to

the third transaction t3. Next, we assign the remaining transactions t2, t4, and t5 in that

order. Consider t2. If we assign t2 to S1, LCG(S1∪{t2})=<Fruit, Beef , Food>, and GGD

= 2×(27+0+1) = 2.57. If we assign t2 to S2, LCG(S2∪{t2})=<Meat, Dairy, Food> and

GGD = 2×(17+2
7+1) = 2.85. Thus the decision is assigning t2 to S1 resulting in S1={t1,t2}

and LCG(S1)=<Fruit, Beef , Food>.

Next, we assign t4 to S2 because S1 has contained k=2 transactions. So S2={t3, t4} and

LCG(S2)= <Chicken, Food>. Next, we have the choice of assigning t5 to S1 or S2 because

both have contained 2 transactions. The decision is assigning t5 to S2 because it results in

a smaller GGD, and LCG(S2) = <Chicken, Food>. So the final clustering is S1={t1, t2}
and S2={t3, t4, t5}. The last column of Table 5.1 shows the final generalized transactions.

Let us compare this result of Clump with the result of Partition in the third col-

umn (which has been derived in Section 1.1). For Clump, we measure the distortion by∑
GGD(Si, LCG(Si)) over all clusters Si. For Partition, we measure the distortion by∑
GGD(Si, tj) over all sub-partitions Si where tj is the generalized transaction for Si.

The GGD for Clump is 2×(27+0+1) + [3×(0+1)+1] = 6.57, compared to [2×(27+1
7)+1] +

[3×(1)+5] = 8.85 for the Partition.

CHAPTER 5. COMPUTING LCG 43

ID Original Data Partition Clump

t1 < Orange, Chicken,Beef > < Fruit,Meat > < Fruit, Beef, Food >

t2 < Banana,Beef, Cheese > < Food > < Fruit, Beef, Food >

t3 < Chicken,Milk,Butter > < Food > < Chicken, Food >

t4 < Apple, Chicken > < Fruit,Meat > < Chicken, Food >

t5 < Chicken,Beef > < Food > < Chicken, Food >

Table 5.1: Comparison of Partition and Clump in sample 2-anonymization

Chapter 6

Experiments and Results

In this chapter we evaluate our approach using the real AOL query logs [50]. We could also

perform experiments on synthetic data, however, such results can not be realistic and does

not indicate our method is effective if applied for query log data since such generated data

can be suitable for our algorithm and challenging for the competitor approach.

We compared our method Clump with the state-of-the-art transaction anonymization

method Partition [34]. The implementation was done in Visual C++ and the experiments

were performed on a system with core-2 Duo 2.99GHz CPU with 3.83 GB memory.

6.1 Experiment Setup

6.1.1 Dataset information

The AOL query log collection dataset consists of 20M web queries collected from 650k users

over three months in form of {AnonID,QueryContent,QueryT ime, ItemRank,ClickURL}
and are sorted by anonymous AnonID (user ID). Our experiments focused on anonymizing

QueryContent. The dataset has a size of 2.2GB and is divided into 10 subsets, each of which

has similar characteristics and size. In our experiment, we used the first subset.

In addition, we merged the queries issued by the same user (AnonID) into one trans-

action because each query is too short, and removed duplicate items, resulting in 53,058

queries or transactions with the average transaction length of 20.93. Merging short queries

make sense in our work since longer transactions arise privacy issues not the short ones.

Besides, merged queries still have many applications such as web search personalization,

44

CHAPTER 6. EXPERIMENTS AND RESULTS 45

query spelling correction, advertisement, and etc. Also short queries can result in a huge

information loss due to suppression and also generalizing level (close to the taxonomy root)

which is not suitable for our anonymization purpose. This merging, however, affect some

query log applications which deal with timestamps and session of queries.

We generated the item taxonomy T using the WordNet dictionary [25]. According to

the WordNet, each noun has multiple senses. A sense is represented by a synset, i.e., a

set of words with the same meaning. We used the first word to represent a synset. In pre-

processing the AOL dataset, we discarded words that are not in the WordNet dictionary.

We treated each noun as an item and interpreted each noun by its most frequently used

sense i.e., the first synset. Therefore, nouns together with the is-a-kind-of links among them

comprise a tree. The generated taxonomy tree contains 25,645 items and has the height 18.

We investigate four quality indicators: a) distortion (i.e., information loss), b) average

generalized transaction length, which reflects the number of items suppressed, c) average

level of generalized items (with the root at level 1), and d) execution time. The distortion

is measured by
∑
GGD(Si, LCG(Si)) over the clusters Si for Clump, and by

∑
GGD(Si,

tj) over the sub-partitions Si for Partition where tj is the generalized transaction.

6.1.2 Parameters Setting

The first parameter is the anonymity parameter k. We set k to 5, 7, 10, and 15. Another

parameter is the database size |D| (i.e., the number of transactions). In our experiments,

we used the first 1000, 10000, and 53,058 transactions to evaluate the runtime and the effect

of “transaction density” on our algorithm performance.

|D| 1,000 10,000 20,000 30,000 40,000 53,058

Density 0.28% 0.25% 0.20% 0.16% 0.14% 0.11%

Table 6.1: Transaction database density

The transaction density is measured by the ratio Ntotal
(|D|×|L|) , where Ntotal is the sum of

number of items in all transactions, |D| is the number of transactions, and |L| is the number

of leaf items in our taxonomy. |D| × |L| is the maximum possible number of items that can

occur in |D| transactions. Table 6.1 shows the density of the first |D| transactions. Clearly,

a database gets sparser as |D| grows. Unless otherwise stated, we set the parameter r=10.

CHAPTER 6. EXPERIMENTS AND RESULTS 46

Figure 6.1: Comparison of information loss

6.2 Results

As discussed in Section 1.1, one of our goals is to preserve duplicate items after generalization

because duplication of items tells some information about the number of items in an original

transaction, which is useful to data analysis. To study the effectiveness of achieving this

goal, we consider two versions of the result produced by Clump, denoted by Clump1 and

Clump2. Clump1 represents the result produced by Clump as discussed in Section 4, thus,

preserves duplicate items in LCG. Clump2 represents the result after removing all duplicate

items from LCG.

6.2.1 Information loss

Figure 6.1 clearly shows that the information loss is reduced by the proposed Clump com-

pared with Partition. The reduction is as much as 30%. As we shall see shortly, this

reduction comes from the lower generalization level of the generalized items in LCG, which

comes from the effectiveness of grouping similar transactions in our clustering algorithm.

However, the difference between Clump1 and Clump2 is very small.

A close look reveals that many duplicate items preserved by Clump1 are at a high level of

the taxonomy tree. For such items, generalization has a GGD close to that of suppressing an

item. However, this does not mean that such duplicate items carry no information. Indeed,

duplicates of items tell some information about the quantity or frequency of an item in an

original transaction. Such information is not modelled by the GGD metric.

As the database gets larger, the data gets sparser, the improvement of Clump over

Partition gets smaller. In fact, when data is too sparse, no algorithm is expected to per-

form well. As the privacy parameter k increases, the improvement reduces. This is because

each cluster contains more transactions, possibly of different lengths; therefore, more gen-

eralization and more suppression are required for the LCG of such clusters. Typically, k in

CHAPTER 6. EXPERIMENTS AND RESULTS 47

Figure 6.2: Comparison of average generalized transaction length

Figure 6.3: Comparison of average level of generalized item

the range of [5,10] would provide adequate protection.

6.2.2 Average generalized transaction length

Figure 6.2 shows the average length of generalized transactions. Clump1 has significantly

larger length than Clump2 and Partition. This longer transaction length is mainly the

consequence of preserving duplicate items in LCG by Clump1. As discussed above, dupli-

cate items carry useful information about the quantity or frequency of items in an original

transaction. The proposed Clump preserves better such information than Partition.

6.2.3 Average level of generalized items

Figure 6.3 shows that the average level of generalized items for Clump2 is lower than that

for Partition which is lower than that for Clump1 (recall that the root item is at level 1).

This is due to the fact that many duplicate items preserved by Clump1 are at a levelclose

to the root. When such duplicates are removed (i.e., Clump2), the remaining items have a

lower average level than Partition.

CHAPTER 6. EXPERIMENTS AND RESULTS 48

Figure 6.4: Effect of r on Clump1

Figure 6.5: Comparison of running time

6.2.4 Sensitivity to the parameter r

This is the number of top clusters examined for assigning each transaction. A larger r

means that more clusters will be examined to assign a transaction, thus, a better local

optimal cluster but a longer runtime. In this experiment, we set |D|=53,058 and k=5. As

shown in Figure 6.4, we set r to 5, 10, 30, 50, and 100.

This experiment shows that a larger r does not always give a better result since Clump

works in a greedy manner and by increasing the number of clusters to examine, we may

come up with a locally optimal choice that later increases the overall information loss. Our

experiments show that r=10 achieves a good result.

6.2.5 Runtime

Figure 6.5 depicts the runtime comparison for k=5 and r=10. Clump takes longer time

than Partition does. In fact, the small runtime of Partition is largely due to the fact that

the top-down algorithm stops partitioning the data at a high level of the taxonomy because

a sub-partition contains less than k transactions. Thus, this small runtime is in fact at the

costly information loss. Clump takes a longer runtime but is still linearly scalable with

respect to the data size. Considering the notably less information loss, the longer runtime

of Clump is justified.

Chapter 7

Conclusion

The objective of publishing query logs for research is constrained by privacy concerns and

it is a challenging problem to achieve a good tradeoff between privacy and utility of query

log data. In this work, we proposed a novel solution to this problem by casting it as a

special clustering problem and generalizing all transactions in each cluster to their least

common generalization (LCG). The goal of clustering is to group transactions into clusters

so that the overall distortion is minimized and each cluster has at least the size k. We

devised efficient algorithms to find a good clustering. Our studies showed that the proposed

algorithm retains a better data utility in terms of less data generalization and preserving

more items, compared to the state-of-theart transaction anonymization approaches.

49

Bibliography

[1] N. R. Adam and J. C. Wortman. Security conrol methods for statistical databases.
ACM Computer Surveys, 21, 1989.

[2] E. Adar. User 4xxxxx9: Anonymizing query logs. In Query Log Workshop, In WWW,
2007.

[3] C. C. Aggarwal and P. S. Yu. On static and dynamic methods for condensation-based
privacy preserving data mining. ACM Transactions on Database Systems (TODS),
2008.

[4] G. Aggarwal, T. Feder, K. Kenthapadi, R. Motwani, R. Panigrahy, D. Thomas, and
A. Zhu. Anonymizing tables. In ICDT, pages 246–258, 2005.

[5] D. Agrawal and C. C. Aggarwal. On the design and quantification of privacy preserving
data mining algorithms. In ACM PODS, 2001.

[6] R. Agrawal, T. Imielinski, and A. N. Swami. Mining association rules between sets of
items in large databases. In ACM SIGMOD, 1993.

[7] R. Agrawal and R. Srikant. Privacy preserving data mining. In ACM SIGMOD, 2000.

[8] M. Barbaro and T. Zeller. A face is exposed for aol searcher no. 4417749. The New
York Times, 2006.

[9] R. J. Bayardo and R. Agrawal. Data privacy through optimal k-anonymization. In
IEEE ICDE, 2005.

[10] S. Beitzel, E. Jensen, A. Chowdhury, Grossman D., and O. Frieder. Hourly analysis of
a very large topically categorized web query log. In ACM SIGIR, 2004.

[11] R. Brand. Microdata protection through noise addition. Inference Control in Statistical
Databases, From Theory to Practice, pages 97–116, 2002.

[12] J.-W. Byun, Y. Sohn, E. Bertino, and N. Li. Secure anonymization for incremental
datasets. In VLDB Workshop on Secure Data Management (SDM), 2006.

[13] J. Cao, Karras P., C. Raissi, and K. Tan. ρ-uncertainty: Inference-proof transaction
anonymization. In VLDB, 2010.

50

BIBLIOGRAPHY 51

[14] D. M. Carlisle, M. L. Rodrian, and C. L. Diamond. California inpatient data reporting
manual, medical information reporting for california. Tech. rep., Office of Statewide
Health Planning and Development, 5th edition., 2007.

[15] D. Chaum. Untraceable electronic mail, return addresses, and digital pseudonyms.
Communications of the ACM, 24:84–88, 1981.

[16] A. Cooper. A survey of query log privacy enhancing techniques from a policy perspec-
tive. In ACM Transactions on the Web, volume 2, No. 4, pages 1–27. ACM, 2008.

[17] L. H. Cox. Suppression methodology and statistical disclosure control. In Journal of
the American Statistical Association, volume 75, 370 (June), pages 377–385, 1980.

[18] T. Dalenius. Finding a needle in a haystack - or identifying anonymous census record.
In Journal of Official Statistics, volume 2, 3, pages 329–336, 1986.

[19] J. Domingo-Ferrer and V. Torra. A critique of k-anonymity and some of its enhance-
ments. In International Conference on Availability, Reliability and Security (ARES),
2008.

[20] W. Du and Z. Zhang. Using randomized response techniques for privacy-preserving
data mining. In ACM SIGKDD, 2003.

[21] C. Dwork. Differential privacy. In the 33rd International Colloquium on Automata,
Languages and Programming (ICALP), 2007.

[22] A. Erola, J. Castell-Roca, G. Navarro-Arribas, and V. Torra. Semantic microaggrega-
tion for the anonymization of query logs. In Privacy in Statistical Databases, 2010.

[23] A. Evfimievski, J. Gehrke, and R. Srikant. Limiting privacy breaches in privacy pre-
serving data mining. In ACM PODS, 2003.

[24] A. Evfimievski, R. Srikant, R. Agrawal, and J. Gehrke. Privacy preserving mining of
association rules. In ACM SIGKDD, 2002.

[25] C. Fellbaum. WordNet: An electronic lexical database. MIT Press, Cambridge, MA,
1998.

[26] W. A. Fuller. Masking procedures for microdata disclosure limitation. Official Statistics,
pages 383–406, 1993.

[27] B. C. M. Fung, K. Wang, Rui C., and P. S. Yu. Privacy preserving data publishing: a
survey on recent developments. In ACM Computing Surveys, volume 42, Issue No 4,
2010.

[28] B. C. M. Fung, K. Wang, A. W. C. Fu, and J. Pei. Anonymity for continuous data
publishing. In the 11th International Conference on Extending Database Technology
(EDBT), 2008.

BIBLIOGRAPHY 52

[29] B. C. M. Fung, K. Wang, and P. S. Yu. Top-down specialization for information and
privacy preservation. In IEEE ICDE, 2005.

[30] B. C. M. Fung, K. Wang, and P. S. Yu. Anonymizing classification data for pri-
vacy preservation. IEEE Transactions on Knowledge and Data Engineering (TKDE),
19:711–725, 2007.

[31] J. Gehrke. Models and methods for privacy-preserving data publishing and analysis.
In Tutorial at ACM SIGKDD, 2006.

[32] G. Ghinita, Y. Tao, and P. Kalnis. On the anonymization of sparse high-dimensional
data. In IEEE International Conference on Data Engineering (ICDE), 2008.

[33] K. Hafner and T. Zeller. Tempting data, privacy concerns; researchers yearn to use aol
logs, but they hesitate. The New York Times, 2006.

[34] Y. He and J. F. Naughton. Anonymization of set valued data via top-down, local
generalization. In VLDB, 2009.

[35] V. S. Iyengar. Transforming data to satisfy privacy constraints. In ACM SIGKDD,
2002.

[36] M. Jakobsson, A. Juels, and R. L. Rivest. Making mix nets robust for electronic voting
by randomized partial checking. In Proc. of the 11th USENIX Security Symposium,
2002.

[37] D. Kifer and J. Gehrke. Injecting utility into anonymized datasets. In ACM SIGMOD,
2006.

[38] D. Knuth. The art of computer programming, volume 3. Addison-Wesley, 1998.

[39] R. Kumar, J. Novak, B. Pang, and A. Tomkins. On anonymizing query logs via token-
based hashing. In WWW, 2007.

[40] K. LeFevre, D. J. DeWitt, and R. Ramakrishnan. Incognito: Efficient full-domain
k-anonymity. In ACM SIGMOD, 2005.

[41] K. LeFevre, D. J. DeWitt, and R. Ramakrishnan. Mondrian multidimensional k-
anonymity. In IEEE ICDE, 2006.

[42] J. Li, Y. Tao, and X Xiao. Preservation of proximity privacy in publishing numerical
sensitive data. In ACM SIGMOD, 2008.

[43] N. Li, T. Li, and S. Venkitasubramaniam. t-closeness: Privacy beyond k-anonymity
and `-diversity. In IEEE ICDE, 2007.

[44] J. Liu and K. Wang. Anonymizing transaction data by integrating suppression and
generalization. In PAKDD, 2010.

BIBLIOGRAPHY 53

[45] A. Machanavajjhala, J. Gehrke, D. Kifer, and M. Venkitasubramaniam. `-diversity:
Privacy beyond k-anonymity. In 22nd IEEE International Conference on Data Engi-
neering (ICDE), 2006.

[46] A. Machanavajjhala, J. Gehrke, D. Kifer, and M. Venkitasubramaniam. `-diversity:
Privacy beyond k-anonymity. In IEEE ICDE, 2006.

[47] A. Meyerson and R. Williams. On the complexity of optimal k-anonymity. In ACM
PODS, 2004.

[48] A. Milani Fard and K. Wang. An effective clustering approach to web query log
anonymization. In Intl. Conf. on Security and Cryptography, (SECRYPT’10), 2010.

[49] M. E. Nergiz, M. Atzori, and C. W. Clifton. Hiding the presence of individuals from
shared databases. In ACM SIGMOD, 2007.

[50] G. Pass, A. Chowdhury, and C. Torgeson. A picture of search. In The 1st International
Conference on Scalable Information Systems, 2006.

[51] S. P. Reiss. Practical data-swapping: the first steps. ACM Transactions on Database
Systems (TODS), pages 20–37, 1984.

[52] S. P. Reiss, M. J. Post, and T. Dalenius. Non-reversible privacy transformations. In
ACM PODS, 1982.

[53] D. B. Rubin. Discussion statistical disclosure limitation. Journal of Official Statistics,
pages 461–468, 1993.

[54] P. Samarati. Protecting respondents’ identities in microdata releases. IEEE Transac-
tions on Knowledge and Data Engineering (TKDE), 13:1010–1027, 2001.

[55] P. Samarati and L. Sweeney. Generalizing data to provide anonymity when disclosing
information. In ACM SIGACT-SIGMOD-SIGART PODS, 1998.

[56] L. Sweeney. Uniqueness of simple demographics in the u.s. population. LIDAP-WP4
CMU, Laboratory for International Data Privacy, 10:571–588, 2000.

[57] L. Sweeney. Achieving k-anonymity privacy protection using generalization and sup-
pression. International Journal on Uncertainty, Fuzziness and Knowledge-based Sys-
tems, 10:571–588, 2002.

[58] M. Terrovitis, N. Mamoulis, and P. Kalnis. Privacy preserving anonymization of set
valued data. In VLDB, 2008.

[59] K. Wang and B. C. M. Fung. Anonymizing sequential releases. In ACM SIGKDD,
2006.

BIBLIOGRAPHY 54

[60] K. Wang, B. C. M. Fung, and P. S. Yu. Template-based privacy preservation in classi-
fication problems. In IEEE ICDM, 2005.

[61] K. Wang, B. C. M. Fung, and P. S. Yu. Handicapping attackers confidence: An alter-
native to k-anonymization. Knowledge and Information Systems (KAIS), 11, 2007.

[62] S. L. Warner. Randomized response: A survey technique for eliminating evasive answer
bias. Journal of the American Statistical Association, 60:63–69, 1965.

[63] R. C. W. Wong, Li. J., A. W. C. Fu, and K. Wang. (α,k)-anonymity: An enhanced
k-anonymity model for privacy preserving data publishing. In ACM SIGKDD, 2006.

[64] X. Xiao and Y. Tao. Anatomy: Simple and effective privacy preservation. In VLDB,
2006.

[65] X. Xiao and Y. Tao. m-invariance: Towards privacy preserving re-publication of dy-
namic datasets. In ACM SIGMOD, 2007.

[66] J. Xu, W. Wang, J. Pei, X. Wang, B. Shi, and A. W. Fu. Utility-based anonymization
using local recoding. In ACM SIGKDD, 2006.

[67] Y. Xu, K. Wang, A. W. Fu, and P. S. Yu. Anonymizing transaction databases for
publication. In ACM SIGKDD, 2008.

[68] Z. Yang, S. Zhong, and R. N. Wright. Anonymity-preserving data collection. In ACM
SIGKDD, 2005.

[69] Q. Zhang, N. Koudas, D. Srivastava, and T. Yu. Aggregate query answering on
anonymized tables. In IEEE ICDE, 2007.

