Knowledge-Guided Semantic Indexing of Breast Cancer Histopathology Images

TitleKnowledge-Guided Semantic Indexing of Breast Cancer Histopathology Images
Publication TypeConference Paper
Year of Publication2008
AuthorsTutac, A. E., D. Racoceanu, T. Putti, W. Xiong, W. - K. Leow, and V. Cretu
Conference NameBioMedical Engineering and Informatics, 2008. BMEI 2008. International Conference on
Pagination107 -112
Date Publishedmay.
Keywordsbiomedical imaging, breast cancer grading, cancer, computer vision, histopathology images, indexing, knowledge-guided semantic indexing, mammography, medical image processing, Nottingham BCG system, semantic gap, semantic networks

Narrowing the semantic gap represents one of the most outstanding challenges in medical image analysis and indexing. This paper introduces a medical knowledge - guided paradigm for semantic indexing of histopathology images, applied to breast cancer grading (BCG). Our method improves pathologists' current manual procedures consistency by employing a semantic indexing technique, according to a rule-based decision system related to Nottingham BCG system. The challenge is to move from the medical concepts/ rules related to the BCG, to the computer vision (CV) concepts and symbolic rules, to design a future generic framework- following Web Ontology Language standards - for an semi- automatic generation of CV rules. The effectiveness of this approach was experimentally validated over six breast cancer cases consisting of 7000 frames with domain knowledge from experts of Singapore National University Hospital, Pathology Department. Our method provides pathologists a robust and consistent tool for BCG and opens interesting perspectives for the semantic retrieval and visual positioning.


a place of mind, The University of British Columbia

Electrical and Computer Engineering
2332 Main Mall
Vancouver, BC Canada V6T 1Z4
Tel +1.604.822.2872
Fax +1.604.822.5949

Emergency Procedures | Accessibility | Contact UBC | © Copyright 2021 The University of British Columbia