X-ray excited luminescence and local structures in Tb-doped Y2O3 nanocrystals

TitleX-ray excited luminescence and local structures in Tb-doped Y2O3 nanocrystals
Publication TypeJournal Article
Year of Publication1998
AuthorsSoo, Y. L., S. W. Huang, Z. H. Ming, Y. H. Kao, G. C. Smith, E. Goldburt, R. Hodel, B. Kulkarni, J. V. D. Veliadis, and R. N. Bhargava
JournalJournal of Applied Physics
Pagination5404 -5409
Date Publishedmay.
KeywordsEXAFS, impurity states, nanostructured materials, photoluminescence, terbium, yttrium compounds

Pronounced structure in x-ray excited luminescence (XEL) has been observed in dilute Tb-doped Y2O3 (Y2O3:Tb) nanocrystals. This effect affords a means to assess different energy transfer mechanisms in the nanocrystals and also an opportunity for novel device applications. Sharp jumps and oscillations are found in the XEL output with the incident x-ray energy around the absorption edges of Y and Tb. When compared with a bulk Y2O3:Tb sample, these effects are attributed to some unique electronic and optical properties of doped nanocrystals related to quantum confinement of charge carriers, and the main features can be explained by a proposed model of multichannel energy transfer. Extended x-ray absorption fine structure techniques have also been employed to study the effect of size variation and chemical doping on the local structures in Y2O3 and Y2O3:Tb nanocrystals. The local environment surrounding Y and Tb in the nanocrystals is compared with that in the respective bulk material. The results indicate that Tb impurity atoms substitute for Y sites in bulk Y2O3, while doping in the nanocrystals is complicated by the large fraction of surface atoms and local disorder. #xa9; 1998 American Institute of Physics.


a place of mind, The University of British Columbia

Electrical and Computer Engineering
2332 Main Mall
Vancouver, BC Canada V6T 1Z4
Tel +1.604.822.2872
Fax +1.604.822.5949

Emergency Procedures | Accessibility | Contact UBC | © Copyright 2021 The University of British Columbia