System analysis of power transients in advanced WDM networks

TitleSystem analysis of power transients in advanced WDM networks
Publication TypeJournal Article
Year of Publication2002
AuthorsGorinevsky, D., and G. Farber
Secondary AuthorsChen, R. T., and J. C. Chon
JournalWDM and PHOTonIC SWITCHING Devices for Network Applications III

This paper considers dynamical transient effects in the physical layer of an optical circuit-switched WDM network. These transients of the average transmission power have millisecond time scales. Instead of studying detailed nonlinear dynamics of the network elements, such as optical line amplifiers, a linearized model of the dynamics around a given steady state is considered. System-level analysis in this paper uses modern control theory methods and handles nonlinearity as uncertainty. The analysis translates requirements on the network performance into the requirements to the network elements. These requirements involve a few gross measures of performance for network elements and do not depend on the circuit switching state. One such performance measure is the worst amplification gain for all harmonic disturbances of the average transmission power. Another, is cross coupling of the wavelength channel power variations. The derived requirements guarantee system-level performance for all network configurations and can be used for specifying optical components and subsystems.

a place of mind, The University of British Columbia

Electrical and Computer Engineering
2332 Main Mall
Vancouver, BC Canada V6T 1Z4
Tel +1.604.822.2872
Fax +1.604.822.5949

Emergency Procedures | Accessibility | Contact UBC | © Copyright 2021 The University of British Columbia