A system for ultrasound-guided computer-assisted orthopaedic surgery

TitleA system for ultrasound-guided computer-assisted orthopaedic surgery
Publication TypeJournal Article
Year of Publication2005
AuthorsChen, T. K., P. Abolmaesumi, D. R. Pichora, and R. E. Ellis
JournalComput Aided Surg

Current computer-assisted orthopedic surgery (CAOS) systems typically use preoperative computed tomography (CT) and intraoperative fluoroscopy as their imaging modalities. Because these imaging tools use X-rays, both patients and surgeons are exposed to ionizing radiation that may cause long-term health damage. To register the patient with the preoperative surgical plan, these techniques require tracking of the targeted anatomy by invasively mounting a tracking device on the patient, which results in extra pain and may prolong recovery time. The mounting procedure also leads to a major difficulty of using these approaches to track small bones or mobile fractures. Furthermore, it is practically impossible to mount a heavy tracking device on a small bone, which thus restricts the use of CAOS techniques. This article presents a novel CAOS method that employs 2D ultrasound (US) as the imaging modality. Medical US is non-ionizing and real-time, and our proposed method does not require any invasive mounting procedures. Experiments have shown that the proposed registration technique has sub-millimetric accuracy in localizing the best match between the intraoperative and preoperative images, demonstrating great potential for orthopedic applications. This method has some significant advantages over previously reported US-guided CAOS techniques: it requires no segmentation and employs only a few US images to accurately and robustly localize the patient. Preliminary laboratory results on both a radius-bone phantom and human subjects are presented.


a place of mind, The University of British Columbia

Electrical and Computer Engineering
2332 Main Mall
Vancouver, BC Canada V6T 1Z4
Tel +1.604.822.2872
Fax +1.604.822.5949

Emergency Procedures | Accessibility | Contact UBC | © Copyright 2021 The University of British Columbia