Stable Throughput Regions of Opportunistic NOMA and Cooperative NOMA With Full-Duplex Relaying

Yong Zhou, Member, IEEE, Vincent W.S. Wong, Fellow, IEEE, and Robert Schober, Fellow, IEEE

Abstract—In this paper, we consider downlink non-orthogonal multiple access (NOMA) transmission with dynamic traffic arrival for spatially random users of different priorities. By exploiting limited channel state information, we propose an opportunistic NOMA scheme to enable NOMA for high- and low-priority users when high-priority users experience good channel conditions. Opportunistic NOMA improves the transmission opportunities of low-priority users while reducing the adverse effect of NOMA on high-priority users. Moreover, we propose a cooperative NOMA scheme with full-duplex relaying, where low-priority users act as full-duplex relays to assist the high-priority users. The high-priority user constructively combines the signal and its delayed version transmitted by the base station and a selected relay, respectively. The adopted relay selection scheme takes into account the users’ spatial distribution, queue status, and channel conditions. By using tools from queueing theory and stochastic geometry, we derive the stable throughput regions of both proposed schemes. Furthermore, we derive the conditions under which the proposed NOMA schemes achieve larger stable throughput regions than orthogonal multiple access (OMA). At the expense of a higher implementation complexity and with appropriate parameter setting, cooperative NOMA with full-duplex relaying achieves a larger stable throughput region than opportunistic NOMA, which in turn outperforms OMA.

Index Terms—Non-orthogonal multiple access, stable throughput, dynamic traffic arrival, full-duplex relaying, spatially random users.

I. INTRODUCTION

TO MEET the rapidly increasing traffic demand caused by the proliferation of mobile devices and data intensive applications, non-orthogonal multiple access (NOMA) [2] has been proposed as a promising technique to enhance the spectral efficiency of the fifth generation (5G) cellular network. With NOMA, multiple users can simultaneously be served by exploiting the power domain rather than the time and frequency domains as in orthogonal multiple access (OMA). By appropriately allocating the transmit power at the base station to multiple users with diverse channel conditions, NOMA can achieve a balance between network throughput and user fairness.

NOMA has recently received considerable research interest [3]–[9]. Specifically, the system-level performance of downlink NOMA transmission is evaluated in [3], which shows that transmit power allocation and user pairing are two important design aspects of NOMA. An optimal power allocation strategy is proposed in [4] to maximize the sum rate of multiple-input multiple-output (MIMO) NOMA networks. The authors in [5] formulate a joint transmit power and subcarrier allocation problem for maximization of the sum rate of multi-carrier NOMA networks and solve the problem using matching theory. The impact of user pairing on the performance of NOMA is investigated in [6], which shows that NOMA achieves a better performance when the paired NOMA users experience more distinct channel conditions. The authors in [7] derive the outage probability of MIMO-NOMA for both uplink and downlink transmission. In addition, the outage probability of a cooperative NOMA scheme is analyzed in [8], where a relay is selected to forward packets to paired NOMA users having different priorities and the low-priority user is served in an opportunistic manner. However, all of the aforementioned studies focus on resource allocation and performance analysis for NOMA with backlogged traffic.

Full-duplex communication can enhance the spectral efficiency by allowing the radios to simultaneously transmit and receive on the same frequency channel. The main challenge for realizing full-duplex communication is the self-interference due to signal leakage, which significantly degrades the performance gain achieved by full-duplexing [10]. Nevertheless, with the advancement of analog and digital self-interference cancelation techniques, full-duplex radios have been successfully implemented [11]. The rate region of full-duplex links in orthogonal frequency division multiplexing systems is analyzed in [12]. The authors in [13] develop a joint power and subcarrier allocation policy to maximize the weighted sum throughput of multi-carrier NOMA systems, where the full-duplex base station simultaneously serves multiple uplink and downlink users. Furthermore, full-duplex relaying has recently attracted significant interest [14], [15]. The authors in [14] compare the spectral efficiency of half- and full-duplex relaying strategies, and propose a joint opportunistic mode
selection and transmit power adaptation scheme to optimize spectral efficiency. However, the performance of full-duplex relaying in NOMA systems with dynamic traffic arrival and spatially random relays has not been studied yet.

Different from the aforementioned studies, we consider downlink NOMA transmission with dynamic traffic arrival and spatially random users of different priorities. For dynamic traffic arrival, the stable throughput region [16]–[19] is an important performance metric and defined as the set of achievable packet arrival rates given that all queues are stable. However, according to the NOMA principle, a low-priority user is allowed to share the frequency channel and transmit power with a high-priority user, which may reduce the reception reliability of the high-priority user and lead to queue instability. In NOMA, the low-priority user, which is allocated a lower transmit power, needs to decode the signal intended for the high-priority user first before decoding its own signal. Hence, the low-priority user can act as a relay and assist the transmission of the high-priority user. However, when half-duplex relaying is used, an additional time slot is required for packet forwarding, which reduces the spectral efficiency. Full-duplex relaying has the potential to mitigate this disadvantage. The performance gain achieved by full-duplex relaying can be further improved by relay selection, where the selection should take into account the residual self-interference, the queue status, and the spatial distribution of the potential relays. Considering dynamic traffic arrival together with NOMA leads to interacting queues, which complicates the performance analysis. In particular, the service process of a given queue depends on the status of the other queue, as the status of both queues determines whether NOMA can be enabled. Furthermore, channel state information (CSI) plays an important role in designing user pairing and transmit power allocation strategies. As full CSI is difficult to obtain in practice, the impact of limited CSI [20] on the performance of NOMA should be investigated.

To address the aforementioned issues, we first propose an opportunistic NOMA scheme exploiting limited CSI, where NOMA for high- and low-priority users is enabled only if the channel gain between the base station and the high-priority user does not fall below a certain threshold. NOMA for the low-priority users is also enabled by exploiting the differences of the low-priority users’ distances to the base station. By appropriately setting the threshold to trigger NOMA, the opportunistic NOMA scheme improves the transmission opportunities of the low-priority users without degrading the performance of the high-priority users. Furthermore, we propose a cooperative NOMA scheme with full-duplex relaying, where the low-priority users act as full-duplex relays to help forward packets to the high-priority users. By exploiting cooperative diversity to enhance the probability of successful packet reception at the high-priority users, the number of packet retransmissions for the high-priority users is reduced, which in turn further improves the transmission opportunities of the low-priority users. The main contributions of this paper are summarized as follows:

- We develop a theoretical performance analysis framework for downlink NOMA transmission with dynamic traffic arrival and spatially random users of different priorities. This analytical framework provides a better understanding of the benefits and limitations of NOMA.
- We decouple the interacting queues caused by dynamic traffic arrival and NOMA by allowing empty queues to contribute dummy packets. Tools from queueing theory and stochastic geometry are applied to characterize the stable throughput region of opportunistic NOMA.
- We derive the stable throughput region of cooperative NOMA with full-duplex relaying, taking into account the residual self-interference, spatially random low-priority users, and relay selection. Studying both opportunistic NOMA and cooperative NOMA with full-duplex relaying provides insights regarding the tradeoff between network performance and implementation complexity. We also derive the conditions under which the proposed NOMA schemes achieve larger stable throughput regions than OMA.
- Simulation results validate the analysis of the probabilities of successful packet reception. Numerical results show that, with appropriate parameter setting, both proposed NOMA schemes can outperform OMA, and cooperative NOMA with full-duplex relaying can achieve a larger stable throughput region than opportunistic NOMA at the expense of a higher implementation complexity. The impact of the relevant design and system parameters (e.g., the threshold to trigger NOMA and the power allocation coefficients) on the stable throughput regions of the proposed NOMA schemes is also evaluated.

The rest of this paper is organized as follows. We describe the system model in Section II. In Section III, we present the opportunistic NOMA scheme and derive its stable throughput region. We describe the cooperative NOMA scheme with full-duplex relaying and characterize its stable throughput region in Section IV. In Section V, we present the conditions under which the proposed NOMA schemes achieve larger stable throughput regions than OMA. Numerical results are provided in Section VI. Finally, Section VII concludes this paper.

II. System Model

Consider a downlink transmission scenario consisting of one base station and multiple users, as shown in Fig. 1(a). Base station S is located at the center of the circular network coverage area with radius r. Over a single frequency channel, time is divided into slots of constant durations. Users are categorized into two groups with different priorities, i.e., K low-priority users in set U_L and M high-priority users in set U_H. The locations of low-priority users are assumed to follow a binomial point process (BPP) [21], [22]. Specifically, for each time slot, K low-priority users are independently and uniformly distributed within the network coverage area. On the other hand, the high-priority users are located r_{HI} meters away from the base station.

The proposed framework can be extended to the case where the high-priority users also have random distances to the base station by first conditioning on the distance and then taking the expectation over the high-priority user distance distribution. The resulting analytical expressions involve an additional integral compared to the results obtained for the fixed high-priority user distance considered in this paper. Fixed user distances were also assumed in other works in the literature, e.g., [23]–[25], as this approach simplifies the analytical expressions without compromising the insights that can be obtained, as demonstrated in [26].
from base station S in a random direction. Base station S and all users have a single antenna.

Base station S is equipped with two queues of infinite size, denoted as Q_H and Q_L, which store the packets to be transmitted to the high- and low-priority users, respectively, as shown in Fig. 1(b). The packet arrival at base station S for each user follows an independent and stationary process. For ease of presentation, the average arrival rates of users having the same priority are assumed to be identical, but the analysis can be extended to a general scenario with diverse average arrival rates. The average arrival rates of queues Q_H and Q_L are given by $\lambda_H = M\lambda_H$ and $\lambda_L = K\lambda_L$ (packets per time slot), where λ_H and λ_L denote the average arrival rates for each high- and low-priority user, respectively. Packets for users having the same priority have the same size in bits and are served in a first-in first-out (FIFO) manner. Each packet is transmitted in one time slot.

The channel between any two transceivers suffers from path loss and Rayleigh fading. A packet can be successfully decoded only if the received signal-to-interference-plus-noise ratio (SINR) is not smaller than a required reception threshold. Upon successfully (or erroneously) receiving a packet from base station S, the corresponding receiver sends feedback that indicates the packet success or failure to base station S via an error- and delay-free control channel. After successful reception, the packet is removed from the queue at base station S. Otherwise, base station S retransmits the packet until it is successfully decoded. We denote $Q_H(t)$ and $Q_L(t)$ as the queue lengths of Q_H and Q_L in time slot t, respectively. A queue is said to be stable if its queue length has a limiting distribution as time goes to infinity. For high-priority queue, we have $\lim_{t \to \infty} P(Q_H(t) < l) = F(l)$ and $\lim_{t \to \infty} F(l) = 1$.

If the arrival and service processes of a queue are jointly stationary and ergodic, by Loynes’ theorem [27], the sufficient condition for the stability of queue Q_H is that $\lambda_H < \mu_H$, where μ_H (packets per time slot) is the average service rate of queue Q_H. The network is stable when both queues Q_H and Q_L are stable. In this work, the stable throughput region is defined as the set of arrival rates of queues Q_H and Q_L that lead to a stable network for fixed power allocation coefficients and threshold to trigger NOMA. The full stable throughput region refers to the union of the stable throughput regions over all possible values of the power allocation coefficients and threshold to trigger NOMA.

In order to reduce the implementation complexity, we consider the case when two users are paired for NOMA transmission. Such a two-user NOMA scheme is included in the 3rd Generation Partnership Project (3GPP) standard [28] and considered in [4] and [6]–[8]. We denote the intended receivers of the first packet from queue Q_H and the first packet from queue Q_L by u_H^1 and u_L^1, respectively. When NOMA is performed to serve users u_H^1 and u_L^1 in time slot t, the superimposed signal transmitted by base station S is $\alpha_H \sqrt{P_S s_H^1(t)} + \alpha_L \sqrt{P_S s_L^1(t)}$, where P_S denotes the transmit power of base station S, α_H and α_L denote the transmit power allocation coefficients for the high- and low-priority users, respectively, and $s_H^1(t)$ and $s_L^1(t)$ denote the signals intended for users u_H^1 and u_L^1 in time slot t, respectively, with $\mathbb{E}\left(|s_H^1(t)|^2\right) = \mathbb{E}\left(|s_L^1(t)|^2\right) = 1$. Here, $\mathbb{E}(\cdot)$ denotes statistical expectation. The paired NOMA users are ordered according to their priorities for being served [8]. As user u_H^1 has a higher priority, we have $\alpha_H > \alpha_L$ and $\alpha_H^2 + \alpha_L^2 = 1$. Before transmission begins, the base station informs user u_L^1 that it is expected to perform successive interference cancelation (SIC) by sending a corresponding control information, which includes information about the allocated transmit power and is attached to the user’s scheduling information, as suggested in [28, pp. 15].

The superimposed signal received at user $u_H^1, a \in \{H, L\}$, in time slot t is given by

$$y_H^a(t) = (\alpha_H s_H^1(t) + \alpha_L s_L^1(t)) \sqrt{P_S} h_H^a(t) \sqrt{\ell(x_H^a)} + n_H^a(t),$$

where $h_H^a(t)$ denotes the Rayleigh fading channel gain between base station S and user u_H^a in time slot t, $n_H^a(t)$ denotes the
additive white Gaussian noise (AWGN) at user u_1^H with zero mean and variance σ^2 in time slot t, x_1^a denotes the location of user u_1^H, $\ell(x_1^a) = (1 + (\gamma_1^H)^2)^{-1}$ and γ_1^H denote the non-singular path loss and the distance between base station S and user u_1^H, respectively, and β denotes the path loss exponent. Hence, $|h_1^H(t)|^2$ is an exponential random variable with unit mean.

After receiving the signal from base station S, high-priority user u_1^H treats the signal intended for low-priority user u_1^L as interference and decodes its own signal based on SINR

$$\Gamma_{H1|L1}(t, \alpha_H) = \frac{\alpha_1^2 P_S |h_1^H(t)|^2 \ell(x_1^a)}{\alpha_1^2 P_S |h_1^L(t)|^2 \ell(x_1^a) + \sigma^2},$$

(2)

where $\Gamma_{H1|L1}(t, \alpha_H)$ denotes the SINR of signal $s_1^H(t)$ observed at high-priority user u_1^H when paired with low-priority user u_1^L in time slot t.

Low-priority user u_1^L first decodes the signal intended for high-priority user u_1^H with SINR

$$\Gamma_{L1\rightarrow L1}(t, \alpha_H) = \frac{\alpha_1^2 P_S |h_1^H(t)|^2 \ell(x_1^a)}{\alpha_1^2 P_S |h_1^L(t)|^2 \ell(x_1^a) + \sigma^2},$$

(3)

where $\Gamma_{L1\rightarrow L1}(t, \alpha_H)$ denotes the SINR of signal $s_1^L(t)$ observed at user u_1^L in time slot t.

If low-priority user u_1^L successfully decodes signal $s_1^L(t)$, i.e., $\Gamma_{L1\rightarrow L1}(t, \alpha_H) \geq \Gamma_{th}$, where Γ_{th} denotes the threshold required to successfully decode the packets intended for the high-priority users, then low-priority user u_1^L removes signal $s_1^L(t)$ from received signal $y_1^L(t)$ by applying SIC, and decodes its own signal with signal-to-noise ratio (SINR)

$$\Gamma_{L1}(t, \alpha_L) = \frac{\alpha_1^2 P_S |h_1^L(t)|^2 \ell(x_1^a)}{\sigma^2},$$

(4)

where $\Gamma_{L1}(t, \alpha_L)$ denotes the SNR of signal $s_1^L(t)$ observed at user u_1^L in time slot t.

When NOMA is enabled, users u_1^H and u_1^L can successfully decode their own signals if events $\{\Gamma_{H1|L1}(t, \alpha_H) \geq \Gamma_{th}\}$ and $\{\Gamma_{L1\rightarrow L1}(t, \alpha_H) \geq \Gamma_{th}\}$ and $\Gamma_{L1}(t, \alpha_L) \geq \Gamma_{th}$ occur, respectively, where Γ_{th} denotes the threshold required to successfully decode the packets intended for the low-priority users. Base station S simultaneously serves users u_1^H and u_1^L, at the cost of reducing the probability of successful packet reception at high-priority user u_1^H. Specifically, by sharing the frequency channel and transmit power, the received SINR at high-priority user u_1^H decreases, i.e., $\Gamma_{H1|L1}(t, \alpha_H) < \Gamma_{H1}(t, 1) = P_S |h_1^H(t)|^2 \ell(x_1^a) / \sigma^2$. Hence, to guarantee the stability of queue Q_H, NOMA cannot always be enabled, especially when the average arrival rate λ_H is large.

To facilitate our analysis, for the remainder of this paper, we make the following assumptions. The protocol overhead due to feedback from the users to the base station is much smaller than the packet size and is neglected. The fading coefficients are assumed to remain invariant during one time slot and vary independently over different time slots and across different links, as in [23]–[26] and [29]. At the end of each time slot $t \in \mathbb{Z}^+$, the locations of the low-priority users change according to a high mobility random walk model within the network coverage area as in [23]–[25] and [29]. Hence, the displacement theorem [30] can be applied and the user locations are independent across time slots, which enables the derivation of tractable performance results, providing useful insights on the network performance.

III. Opportunistic NOMA

In this section, we propose an opportunistic NOMA scheme to improve the transmission opportunities of low-priority users while reducing the adverse effect of NOMA on high-priority users, and characterize the stable throughput region.

We assume that only limited instantaneous CSI is available at base station S. First, when queue Q_H is non-empty in time slot t, one bit of information is sent back from high-priority user u_1^H to base station S. In particular, high-priority user u_1^H sends feedback 1 to base station S if the instantaneous channel gain, $|h_1^H(t)|^2 \ell(x_1^H)$, is not less than a threshold, θ, and sends feedback 0 to base station S otherwise. Second, when queue Q_H is empty in time slot t, users u_1^H and u_1^L send back their distances to base station S, where u_1^H denotes the intended receiver of the second packet from queue Q_L when available. Based on the limited CSI, NOMA is enabled by base station S in an opportunistic manner.

We denote the opportunistic NOMA system as Φ^{ON}, where base station S transmits the first packet from queue Q_H whenever it is non-empty due to its high priority to be served. The packet transmissions depend on the status of queues Q_H and Q_L, and are discussed in the following.

Case 1: If $Q_H(t) > 0$ and $Q_L(t) > 0$, then base station S transmits the first packet from queue Q_H and the first packet from queue Q_L to users u_1^H and u_1^L, respectively, using NOMA with fixed power allocation coefficients $\{\alpha_1^H, \alpha_1^L\}$ when $|h_1^H(t)|^2 \ell(x_1^H) \geq \theta$, and transmits the first packet from queue Q_H to user u_1^H using OMA with power P_S when $|h_1^H(t)|^2 \ell(x_1^H) < \theta$.

Case 2: If $Q_H(t) > 0$ and $Q_L(t) = 0$, then base station S transmits the first packet from queue Q_H to user u_1^H using OMA2 with power P_S.

Case 3: If $Q_H(t) = 0$ and $Q_L(t) > 0$, then base station S transmits the first and second packets from queue Q_L to users u_1^L and u_1^H, respectively, using NOMA when the first two packets are intended for different users (i.e., $u_1^H \neq u_1^L$), and transmits the first packet from queue Q_L to user u_1^L using OMA with power P_S when the first two packets are intended for the same user (i.e., $u_1^L = u_1^H$) or $Q_L(t) = 1$.

The average service rate of queue Q_H depends on the status of queue Q_L. When queue Q_L is empty, base station S transmits the first packet from queue Q_H to user u_1^H using OMA. When queue Q_L is non-empty, base station S transmits the first packet from queue Q_H to user u_1^H using NOMA with probability $P \left(|h_1^H(t)|^2 \ell(x_1^H) \geq \theta \right) = \exp \left(-\theta \left(1 + \gamma_1^H \right) \right)$. Similarly, the average service rate of queue Q_L also depends.

2Note that NOMA for different high-priority users is not enabled in this paper, as the probability that different high-priority users experience very different channel conditions is low. However, different user channel conditions are crucial for achieving a gain with NOMA [6]. A similar setting is also considered in [7].
on the status of queue Q_H. Hence, queues Q_H and Q_L interact with each other and their average service rates cannot be directly calculated. In this context, stochastic dominance [31] is a useful tool and can be used to decouple the interacting queues and to characterize the stable throughput region.

By using stochastic dominance, we construct two dominant systems Φ_{ON} and Φ_{OMA} based on the original opportunistic NOMA system Φ_{ON}. In the following, we derive the stable throughput regions of dominant systems Φ_{ON} and Φ_{OMA}, and then show that the stable throughput region of the original opportunistic NOMA system Φ_{ON} is equal to the union of the stable throughput regions of dominant systems Φ_{ON} and Φ_{OMA}.

A. Stable Throughput Region of Dominant System Φ_{ON}

Dominant system Φ_{ON}: If queue Q_L is empty, then queue Q_L contributes a dummy packet when high-priority user u^H_1 sends feedback 1 to base station S, while queue Q_H acts in the same manner as in the original opportunistic NOMA system Φ_{ON}. In dominant system Φ_{ON}, the service process of queue Q_H depends on the condition of the channel between base station S and user u^H_1. Base station S transmits the first packet from queue Q_H to user u^H_1 using OMA and NOMA when $|h^H_1(t)|^2 \ell (x^H_1) < \theta$ and $|h^H_1(t)|^2 \ell (x^H_1) \geq \theta$, respectively. Note that the average probability of successful packet reception at each high-priority user is the same. Hence, the average service rate of queue Q_H, denoted as μ_{ON}^{QH}, is given by

$$\mu_{ON}^{QH} = \mathbb{P} \left(\Gamma_{H_1}(t) \geq \Gamma_{th}^H, |h^H_1(t)|^2 \ell (x^H_1) < \theta \right) + \mathbb{P} \left(\Gamma_{H_1|L_1}(t, \alpha H_1) \geq \Gamma_{th}^H, |h^H_1(t)|^2 \ell (x^H_1) \geq \theta \right),$$

where the first and second terms of the right-hand side of (5) represent the probabilities of successful packet reception at high-priority user u^H_1 when OMA and NOMA are enabled, respectively, with $\alpha_{l_{OMA}}$ and $\alpha_{l_{OMA}} (\alpha H_1, \theta)$, respectively. The following lemma provides the stability condition for queue Q_H in dominant system Φ_{ON}.

Lemma 1: In dominant system Φ_{ON}, queue Q_H is stable if

$$\lambda_H < \mu_{ON}^{QH} = \exp \left(-\rho_H \left(1 + \rho_H^\beta \right) - \exp \left(-\theta \left(1 + \rho_H^\beta \right) \right) \right) + \exp \left(-\max \left\{ \frac{\rho_H}{\alpha_{l_{OMA}}^H - 1}, \theta \right\} \left(1 + \rho_H^\beta \right) \right),$$

where $\rho_H = \Gamma_{th}^H \alpha_{l_{OMA}}^H / P_S, \theta > \rho_H$, and $\alpha_{l_{OMA}}^H > \Gamma_{th}^H \alpha_{l_{OMA}}^H$. \square

Proof: Please refer to Appendix A.

The service process of queue Q_L in dominant system Φ_{ON} depends on the status of queue Q_H. If queue Q_H is non-empty, then base station S transmits the first packet from queue Q_L to user u^H_1 using NOMA when $|h^H_1(t)|^2 \ell (x^H_1) \geq \theta$. If queue Q_H is empty, then base station S transmits the first and second packets from queue Q_L to users u^H_1 and u^H_2 using NOMA when those two packets are intended for different users (which occurs with probability $1 - \frac{1}{N_1}$), and transmits the first packet from queue Q_L to user u^H_1 using OMA when the first two packets are intended for the same user (which occurs with probability $\frac{1}{N_1}$). As all low-priority users follow the same location distribution, the average probability of successful packet reception at each low-priority user is the same. The average service rate of queue Q_L, denoted as μ_{ON}^{QL}, can be expressed as

$$\mu_{ON}^{QL} = \mathbb{P} \left(Q_H(t) > 0 \right) \mathbb{P} \left(|H_1^L(t)|^2 \ell (x^H_1) \geq \theta \right) q_{L_{ON}}^{QH}(\alpha_L) + \mathbb{P} \left(Q_H(t) = 0 \right) \left(1 + \frac{1}{K} \right) q_{L_{ON}}^{QH}(\alpha_L),$$

where $\mathbb{P} \left(Q_H(t) > 0 \right) = \lambda_H / \mu_{ON}^{QH}$, $q_{L_{ON}}^{QH}(\alpha_L)$ is the probability of successful packet reception at user u^L_1 with power allocation coefficient α_L when paired with user u^L_1, $q_{L_{ON}}^{QH}(\alpha_L)$ is the summation of the probabilities of successful packet reception at users u^L_1 and u^L_2 using NOMA, and $q_{L_{OMA}}^{QH}(\alpha_L)$ denotes the probability of successful packet reception at user u^L_1 using OMA. For two paired low-priority users (i.e., u^L_1 and u^L_2), the transmit power allocation coefficients for the users closer to and farther from the base station are denoted as α_n and α_r, respectively, with $\alpha_n^2 + \alpha_r^2 = 1$. The following lemma presents the stability condition for queue Q_L in dominant system Φ_{ON}.

Lemma 2: In dominant system Φ_{ON}, queue Q_L is stable if

$$\lambda_L < \mu_{ON}^{QL} = \frac{\lambda_H}{\mu_{ON}^{QH}} \exp \left(-\left(1 + \rho_H^\beta \right) \right)^{\alpha_{l_{OMA}}^L} \left(1 + \rho_H^\beta \right),$$

where μ_{ON}^{QH} is given in (6),

$$\alpha_{l_{OMA}}^L(\alpha_L) = \frac{2}{\frac{4}{\rho_H^\beta}} N_1^{-2/\beta} \exp \left(-N_2 \right) \gamma \left(\frac{2}{\beta}, N_1 \rho_H^\beta \right),$$

$$\eta = \left(1 + \frac{1}{K} \right) \left(q_{L_{ON}}^{QH}(\alpha_L) + q_{L_{OMA}}^{QH}(\alpha_L) \right) + \frac{1}{K} q_{L_{OMA}}^{QH}(\alpha_L),$$

$$q_{L_{OMA}}^{QH}(\alpha_L) = \frac{4}{\frac{4}{\rho_H^\beta}} N_2^{-4/\beta} \exp \left(-N_2 \right) \gamma \left(\frac{4}{\beta}, N_2 \rho_H^\beta \right),$$

$$q_{L_{OMA}}^{QH}(\alpha_L) = \frac{4}{\frac{4}{\rho_H^\beta}} N_2^{-4/\beta} \exp \left(-N_2 \right) \gamma \left(\frac{4}{\beta}, N_2 \rho_H^\beta \right),$$

$$q_{L_{OMA}}^{QH}(\alpha_L) = \frac{4}{\frac{4}{\rho_H^\beta}} N_2^{-4/\beta} \exp \left(-N_2 \right) \gamma \left(\frac{4}{\beta}, N_2 \rho_H^\beta \right).$$

Proof: Please refer to Appendix B.

Dominant system Φ_{ON} is stable if both queues Q_H and Q_L are stable, i.e., both $\lambda_H < \mu_{ON}^{QH}$ and $\lambda_L < \mu_{ON}^{QL}$ hold. As a result, based on Lemmas 1 and 2, the stable throughput region
of dominant system Φ_{1}^{ON}, denoted as R_{1}^{ON}, is given by
\[
R_{1}^{\text{ON}} = \left\{ (\lambda_{H}, \lambda_{L}) : \frac{\lambda_{L}}{\eta} + \frac{(\eta - \exp(-\theta(1 + r_{H}^{\beta})) q_{L1|H1}^{\text{ON}}(\alpha_{L}) \lambda_{H})}{\eta \mu_{H}^{\text{ON}}} < 1, \right. \]

for $0 \leq \lambda_{H} < \mu_{H}^{\text{ON}}$. \hfill (14)

B. Stable Throughput Region of Dominant System Φ_{2}^{ON}

Dominant system Φ_{2}^{ON}: If queue Q_{H} is empty, then queue Q_{H} contributes a dummy packet, while queue Q_{L} acts in the same manner as in the original opportunistic NOMA system Φ_{2}^{ON}.

In dominant system Φ_{2}^{ON}, base station S transmits the first packet from queue Q_{L} to user u_{1}^{L} using NOMA when $|h_{1}^{H}(l)|^{2} \ell(x_{1}^{H}) \geq \theta$. The average service rate of queue Q_{L} can be expressed as $\mu_{L}^{\text{ON2}} = \exp(-\theta(1 + r_{H}^{\beta})) q_{L1|H1}^{\text{ON}}(\alpha_{L})$. Queue Q_{L} in dominant system Φ_{2}^{ON} is stable if $\lambda_{L} < \mu_{L}^{\text{ON2}}$.

The service process of queue Q_{H} in dominant system Φ_{2}^{ON} depends on queue Q_{L}. If queue Q_{L} is empty, then base station S transmits the first packet from queue Q_{H} to user u_{1}^{H} using OMA. If queue Q_{L} is non-empty, then base station S transmits the first packet from queue Q_{H} to user u_{1}^{H} using NOMA and OMA when $|h_{1}^{H}(l)|^{2} \ell(x_{1}^{H}) \geq \theta$ and $|h_{1}^{H}(l)|^{2} \ell(x_{1}^{H}) < \theta$, respectively. The average service rate of queue Q_{H} in dominant system Φ_{2}^{ON} is given by
\[
\mu_{H}^{\text{ON2}} = \mathbb{P}(Q_{L}(t) = 0) \mu_{H}^{\text{OMA}} + \mathbb{P}(Q_{L}(t) \geq 1) \left(q_{H1|L1}^{\text{OMA}}(\alpha_{H}, \theta) + q_{H1|L1}^{\text{ON}}(\alpha_{H}, \theta) \right), \hfill (15)
\]

where $\mu_{H}^{\text{OMA}} = \exp(-\rho_{H}(1 + r_{H}^{\beta}))$, $\mathbb{P}(Q_{L}(t) = 0) = 1 - \lambda_{L} / \mu_{L}^{\text{ON2}}$, and $q_{H1|L1}^{\text{OMA}}(\alpha_{H}, \theta)$ and $q_{H1|L1}^{\text{ON}}(\alpha_{H}, \theta)$ are given in (38) and (39), respectively. Queue Q_{H} in dominant system Φ_{2}^{ON} is stable if $\lambda_{H} < \mu_{H}^{\text{ON2}}$.

The stable throughput region of dominant system Φ_{2}^{ON}, denoted as R_{2}^{ON}, is given by
\[
R_{2}^{\text{ON}} = \left\{ (\lambda_{H}, \lambda_{L}) : \frac{\lambda_{H}}{\mu_{H}^{\text{OMA}}} + \frac{\mu_{H}^{\text{OMA}} - q_{H1|L1}^{\text{OMA}}(\alpha_{H}, \theta) - q_{H1|L1}^{\text{ON}}(\alpha_{H}, \theta)}{\exp(-\theta(1 + r_{H}^{\beta})) \mu_{H}^{\text{OMA}} q_{L1|H1}^{\text{ON}}(\alpha_{L})} \lambda_{L} < 1, \right. \]

for $0 \leq \lambda_{L} < \exp(-\theta(1 + r_{H}^{\beta})) q_{L1|H1}^{\text{ON}}(\alpha_{L})$. \hfill (16)

The following theorem presents the stable throughput region of the original opportunistic NOMA system Φ_{1}^{ON}.

Theorem 1: The stable throughput region of the original dominant NOMA system Φ_{1}^{ON} for fixed power allocation coefficients and threshold θ, denoted as R_{1}^{ON}, is equal to the union of the stable throughput regions of dominant systems Φ_{1}^{ON1} and Φ_{2}^{ON}, i.e., $R_{1}^{\text{ON}} = R_{1}^{\text{ON1}} \cup R_{2}^{\text{ON}}$.

Proof: Please refer to Appendix C.

Due to the complexity of analytically deriving the full stable throughput region, we resort to numerical analysis to obtain the full stable throughput region in Section VI, as in [17] and [18].

IV. COOPERATIVE NOMA WITH FULL-DUPLEX RELAYING

The proposed opportunistic NOMA scheme enhances the stable throughput region by providing more transmission opportunities to the low-priority users without improving the performance of the high-priority users. In this section, we propose a cooperative NOMA scheme with full-duplex relaying to improve the reception reliability of the high-priority users with the help of the low-priority users. By exploiting the cooperative diversity gain, the transmission opportunities of the low-priority users can be further increased. The cooperative NOMA system with full-duplex relaying, denoted as Φ^{FCN}, is described as follows.

Case 1: If $Q_{H}(t) > 0$ and $Q_{L}(t) > 0$, then base station S transmits the first packet from queue Q_{H} and the first packet from queue Q_{L} to users u_{1}^{H} and u_{1}^{L}, respectively, using cooperative NOMA with fixed power allocation coefficients (α_{H}, α_{L}). Before transmission begins, base station S informs low-priority user u_{1}^{L} to act as a full-duplex relay. In accordance with the NOMA decoding strategy, low-priority user u_{1}^{L} decodes signal $s_{H}^{H}(t)$ intended for high-priority user u_{1}^{H} before performing SIC. By utilizing suitable channel coding (e.g., convolutional coding), low-priority user u_{1}^{L} can decode signal $s_{H}^{H}(t)$ after a delay of δ symbol durations. Hence, after δ symbol durations, low-priority user u_{1}^{L}, which is assumed to be a full-duplex node, simultaneously receives the superimposed signal from the base station and forwards the delayed version of signal $s_{H}^{H}(t)$ to high-priority user u_{1}^{H} [14], [33]. Full-duplex relaying prototypes have been reported in the literature, e.g., [34]. High-priority user u_{1}^{H} constructively combines and decodes the signal transmitted by base station S and its delayed version forwarded by user u_{1}^{L}. At the end of time slot t, low-priority user u_{1}^{L} performs SIC to remove the contribution of signal $s_{H}^{H}(t)$ from its received signal, and then decodes its own signal $s_{H}^{L}(t)$. The delay δ can be made much smaller than the packet size, and hence, it is neglected for the analysis in this paper. On the other hand, if user u_{1}^{L} cannot successfully decode signal $s_{H}^{H}(t)$, then user u_{1}^{H} remains silent in time slot t and decodes the signals without suffering from the self-interference caused by full-duplex relaying.

Case 2: If $Q_{H}(t) > 0$ and $Q_{L}(t) = 0$, then base station S transmits the first packet from queue Q_{H} to high-priority user u_{1}^{H} using cooperative OMA. Among all low-priority users, the low-priority user that can decode signal $s_{H}^{H}(t)$ from base station S and has the best channel condition with respect to high-priority user u_{1}^{H} is selected as the best relay. The best relay forwards the delayed version of the signal to user u_{1}^{H} in the same time slot. Various efficient relay selection schemes have been proposed in the literature. High-priority user u_{1}^{H} can constructively filter and a Viterbi-style decoder.
constructively combines and decodes the signal received from base station \(S \) and its delayed version received from the best relay. If no low-priority user can successfully decode signal \(s_1^H(t) \), then user \(u_1^H \) decodes signal \(s_1^H(t) \) only based on the signal transmitted by base station \(S \).

Case 3: If \(Q_H(t) = 0 \) and \(Q_L(t) > 0 \), then base station \(S \) transmits the first and second packets from queue \(Q_L \) to users \(u_1^H \) and \(u_2^H \), respectively, using NOMA when the first two packets are intended for different users, and transmits the first packet from queue \(Q_L \) to user \(u_1^H \) using OMA with power \(P_S \). When the first two packets are intended for the same user or \(Q_L(t) = 1 \).

Queues \(Q_H \) and \(Q_L \) in the cooperative NOMA system with full-duplex relaying \(\Phi_{FCN} \) interact with each other, as the average service rate of queue \(Q_H(\Phi) \) depends on the status of queue \(Q_L(\Phi_H) \). When queue \(Q_L \) is non-empty, base station \(S \) transmits the first packet from queue \(Q_H \) using cooperative NOMA. When queue \(Q_L \) is empty, base station \(S \) transmits the first packet from queue \(Q_H \) using cooperative OMA. The probabilities of successful packet reception at user \(u_1^H \) under these two conditions are different. Thus, their average service rates cannot be directly calculated. To decouple the interacting queues and facilitate the derivation of the stable throughput region, we construct two dominant systems, denoted as \(\Phi_{FCN1} \) and \(\Phi_{FCN2} \), by using the concept of stochastic dominance, as discussed in the following.

A. Stable Throughput Region of Dominant System \(\Phi_{FCN1} \)

Dominant system \(\Phi_{FCN1} \): If queue \(Q_L \) is empty, then queue \(Q_L \) contributes a dummy packet, while queue \(Q_H \) acts in the same manner as in the cooperative NOMA system with full-duplex relaying \(\Phi_{FCN} \). In dominant system \(\Phi_{FCN1} \), a randomly selected low-priority user \(u_1^L \) acts as a full-duplex relay in time slot \(t \) when the following condition is satisfied:

\[
\Gamma_{FCN1}^{H1-L1}(t, \alpha_H) = \frac{\alpha_H^2 P_S |h_1^H(t)|^2 \ell(x_1^H)}{\alpha_H^2 P_L |h_1^L(t)|^2 \ell(x_1^L) + \zeta P_L + \sigma^2} \geq \Gamma_{th}^H, \quad (17)
\]

where \(\Gamma_{FCN1}^{H1-L1}(t, \alpha_H) \) denotes the SINR of signal \(s_1^H(t) \) observed at user \(u_1^H \) in time slot \(t \) when cooperative NOMA is enabled, \(\zeta \) denotes the residual self-interference-to-power ratio due to imperfect self-interference cancelation, and \(P_L \) is the transmit power of the low-priority users.

The process of queue \(Q_L \) depends on the value of \(\Gamma_{FCN1}^{H1-L1}(t, \alpha_H) \). Base station \(S \) transmits the first packet from queues \(Q_H \) to user \(u_1^H \) using NOMA and cooperative NOMA when \(\Gamma_{FCN1}^{H1-L1}(t, \alpha_H) < \Gamma_{th}^H \) and \(\Gamma_{FCN1}^{H1-L1}(t, \alpha_H) \geq \Gamma_{th}^H \), respectively. Hence, the average service rate of queue \(Q_H \) in dominant system \(\Phi_{FCN1} \), denoted as \(\mu_{FCN1}^H \), is given by

\[
\mu_{FCN1}^H = \mathbb{P}(Q_H(t) > 0) \frac{\Phi_{FCN1}^H}{Q_H(t)}(\alpha_H) + \mathbb{P}(Q_H(t) = 0) \times \frac{\Gamma_{th}^H - \alpha_H}{\Gamma_{th}^H} q_{L1L2} + \frac{1}{K} q_{L1OMA}, \quad (22)
\]

where \(\Gamma_{th}^H \) is given in (2). The SINR of signal \(s_1^H(t) \) observed at user \(u_1^H \) in time slot \(t \) when cooperative NOMA is enabled, denoted as \(\Gamma_{FCN1}^{H1-L1}(t, \alpha_H) \), can be expressed as

\[
\Gamma_{FCN1}^{H1-L1}(t, \alpha_H) = \frac{\alpha_H^2 P_S |h_1^H(t)|^2 \ell(x_1^H) + P_L |s_1^H(t)|^2 \ell(x_1^H - x_1^L)}{\alpha_H^2 P_S |h_1^L(t)|^2 \ell(x_1^L) + \sigma^2} \geq \Gamma_{th}^H, \quad (18)
\]

where \(g_{11}^H(t) \) and \(\ell(x_1^H - x_1^L) \) denote the Rayleigh fading channel gain and non-singular path loss between users \(u_1^H \) and \(u_1^L \) in time slot \(t \), respectively. The following lemma provides the stability condition for queue \(Q_H \) in dominant system \(\Phi_{FCN1} \).

Lemma 3: In dominant system \(\Phi_{FCN1} \), the stability condition is given by

\[
\lambda_H < \mu_{FCN1}^H = \exp\left(-\frac{\rho_H \left(1 + \frac{r_H}{\alpha_H - \Gamma_{th}^H}\right)}{\alpha_H - \Gamma_{th}^H} \right) \times \left(1 - \frac{1 - \frac{r_H}{\alpha_H - \Gamma_{th}^H}}{N_4 - \frac{1 - \frac{r_H}{\alpha_H - \Gamma_{th}^H}}{N_4 - \frac{1}{\beta^2}} \exp(-N_4) \gamma \left(\frac{2}{\beta}, N_4 \beta^2\right)}\right) + C(\alpha_H), \quad (20)
\]

where \(N_4 = \frac{(\rho_H + \sigma^2)^{-1}}{\alpha_H - \Gamma_{th}^H} \left(1 + \left(\frac{r_H^2}{\Gamma_{th}^H} + \frac{1}{\beta^2}\right) - 2 r_H r_L \cos \theta_1^H \right)^{-1}, N_5 = \exp(-\frac{r_H^2 \sigma^2}{2 Z}), Z = \frac{(\alpha_H - \Gamma_{th}^H)}{\alpha_H - \Gamma_{th}^H} P_L \ell(x_1^H) + \ell(x_1^L)\right), C(\alpha_H) \) is given in (21), as shown at the bottom of this page.

Proof: Please refer to Appendix D.

The service process of queue \(Q_L \) can also be divided into two cases: a) if queue \(Q_H \) is non-empty, then base station \(S \) transmits the first packet from queue \(Q_L \) to user \(u_1^H \) using cooperative NOMA; b) if queue \(Q_H \) is empty, then base station \(S \) transmits the first two packets from queue \(Q_L \) to users \(u_1^L \) and \(u_2^L \) using NOMA when \(u_1^L \neq u_2^L \) and the first packet from queue \(Q_L \) to user \(u_1^L \) using OMA when \(u_1^L = u_2^L \). The average service rate of queue \(Q_L \), denoted as \(\mu_{FCN1}^L \), is given by

\[
\mu_{FCN1}^L = \mathbb{P}(Q_H(t) > 0) \frac{\Phi_{FCN1}^L}{Q_L(t)}(\alpha_L) + \mathbb{P}(Q_H(t) = 0) \times \left(1 - \frac{1}{K} \right) q_{L1L2} + \frac{1}{K} q_{L1OMA}, \quad (22)
\]

where \(\Gamma_{th}^L \) is given in (2).
where \(P(Q_0(t > 0) = \lambda_H/\mu_{FCN}^{L} q_{L1|H_1}(\alpha_L) \) is the probability of successful packet reception at user \(u_1^L \) when cooperative NOMA is enabled, and \(q_{L1,L2}^{ON} \) and \(q_{L1,L2}^{OMA} \) are given in (47) and (48), respectively.

Depending on whether or not user \(u_1^L \) forwards signal \(s_{L1}(t) \)
to user \(u_1^H \), the received SINR of signal \(s_{L1}^H(t) \) observed at user \(u_1^H \) in time slot \(t \) can be expressed as

\[
\Gamma_{FCN}^{L}(t, \alpha_L) = \begin{cases}
\frac{\alpha_L^2 P_S |h_{L1}(t)|^2 \ell(x_L^R)}{\zeta_P L + \sigma^2}, & \text{if } \Gamma_{FCN}^{H}(t, \alpha_H) \geq \Gamma_{th}^H, \\
\frac{\alpha_L^2 P_S |h_{L1}^H(t)|^2 \ell(x_L^R)}{\sigma^2}, & \text{if } \Gamma_{FCN}^{H}(t, \alpha_H) < \Gamma_{th}^H.
\end{cases}
\]

As a result, we obtain (24), as shown at the top of this page.

The following lemma provides the stability condition for queue \(Q_1 \) in dominant system \(\Phi_1^{FCN} \).

Lemma 4: In dominant system \(\Phi_1^{FCN} \), queue \(Q_1 \) is stable if

\[
\lambda_L < \mu_{FCN}^{L} = \frac{\lambda_H}{\mu_{FCN}^{L}} \left(\frac{2}{r^2} N_6^{-2/\beta} \exp(-N_6) \gamma \left(\frac{2}{\beta}, N_6 r^\beta \right) \gamma N_1 \right) + \frac{2}{r^2} N_4^{-2/\beta} \exp(-N_4) \gamma \left(\frac{2}{\beta}, N_4 r^\beta \right) + \left(1 - \frac{\lambda_H}{\mu_{FCN}^{L}} \right) \eta,
\]

where \(N_6 = \max\left\{ \frac{(\zeta_P \alpha^2 + \sigma^2)^{\Gamma_{th}^H}}{(\alpha_L^2 P_S)^2 \eta \Gamma_{th}^H}, \frac{(\zeta_P \alpha^2 + \sigma^2)^{\Gamma_{th}^H}}{\alpha_L^2 P_S \eta \Gamma_{th}^H} \right\}, \quad \alpha_2 > \Gamma_{th}^H a^2, \quad \text{and } \eta \text{ is given in (10)}.

Proof: Please refer to Appendix E.

Based on the average service rates of queues \(Q_H \) and \(Q_L \), the stable throughput region of dominant system \(\Phi_1^{FCN} \), denoted as \(\mathcal{R}_1^{FCN} \), can be expressed as

\[
\mathcal{R}_1^{FCN} = \left\{ (\lambda_H, \lambda_L) : \frac{(\eta - \eta_{L1|H_1}(\alpha_L)) \lambda_H}{\eta (\eta_{H_1}(\alpha_H) + \eta_{FCN}(\alpha_H))} + \frac{\lambda_L}{\eta} < 1, \right. \]

\[
\left. \text{for } 0 \leq \lambda_H < \eta_{H_1}(\alpha_H) + \eta_{FCN}(\alpha_H). \right\}
\]

According to (26), stable throughput region \(\mathcal{R}_1^{FCN} \) depends on the self-interference cancelation coefficient.

B. Stable Throughput Region of Dominant System \(\Phi_2^{FCN} \)

Dominant system \(\Phi_2^{FCN} \): If queue \(Q_H \) is empty, then queue \(Q_L \) contributes a dummy packet, while queue \(Q_L \) acts in the same manner as in the cooperative NOMA system with full-duplex relaying \(\Phi_2^{FCN} \). In dominant system \(\Phi_2^{FCN} \), base station \(S \) transmits the first packet from queue \(Q_L \) to user \(u_1^L \) using cooperative NOMA. The average service rate of queue \(Q_L \), denoted as \(\mu_{FCN}^{L} \), can be expressed as

\[
\mu_{FCN}^{L} = \frac{\lambda_H}{\mu_{FCN}^{L}} q_{L1|H_1}(\alpha_L). \quad \text{Queue } Q_1 \text{ in dominant system } \Phi_2^{FCN} \text{ is stable if } \lambda_L < \mu_{FCN}^{L} \text{.}
\]

The service process of queue \(Q_H \) depends on queue \(Q_L \). If queue \(Q_L \) is empty, then base station \(S \) transmits the first packet from queue \(Q_H \) to user \(u_1^H \) using cooperative OMA. If queue \(Q_L \) is non-empty, then base station \(S \) transmits the first packet from queue \(Q_H \) to user \(u_1^H \) using cooperative NOMA when \(\Gamma_{FCN}^{H}(t, \alpha_H) \geq \Gamma_{th}^H \) and using NOMA when \(\Gamma_{FCN}^{H}(t, \alpha_H) < \Gamma_{th}^H \). Thus, the average service rate of queue \(Q_H \) in dominant system \(\Phi_2^{FCN} \), denoted as \(\mu_{FCN}^{H} \), is given by

\[
\mu_{FCN}^{H} = \frac{P(Q_0(t) = 0)}{q_{H_1}(\alpha_H) + \eta_{FCN}(\alpha_H)),
\]

where \(P(Q_0(t) = 0) = 1 - \lambda_L/\mu_{FCN}^{L} \), \(q_{H_1}(\alpha_H) \) denotes the probability of successful packet reception at user \(u_1^H \) when cooperative OMA is enabled, and \(q_{L1}(\alpha_H) \) and \(q_{L1}(\alpha_H) \) are given in (49) and (52), respectively. When cooperative OMA is enabled, the low-priority users that can successfully decode signal \(s_{L1}(t) \) are referred to as **qualified relays**, which form the decoding set in time slot \(t \), denoted as \(\Omega(t) \) and given by

\[
\Omega(t) = \{ u_k^R \in U^L : \Gamma_{FCN}^{H}(t) \rightarrow \Gamma_{th}^H \},
\]

where \(u_k^R \in U^L \) denotes the \(k \)-th full-duplex relay and

\[
\Gamma_{FCN}^{H}(t) = \frac{\alpha_L P_S |h_{L1, k}^R|^2 \ell(x_{L1, k}^H)}{\zeta_P L + \sigma^2}.
\]

We assume that, via coordination signaling between base station \(S \) and user \(u_1^H \) before the packet transmission, each qualified relay knows the instantaneous channel gain between itself and user \(u_1^H \). If decoding set \(\Omega(t) \) is empty, no low-priority user can help forward signal \(s_{L1}(t) \) to user \(u_1^H \). On the other hand, if decoding set \(\Omega(t) \) is non-empty, the qualified relay that has the best channel condition with respect to high-priority user \(u_1^H \) is selected as the best relay, i.e.,

\[
u_b^R = \arg \max_{u_k^R \in \Omega(t)} \{ P_L |g_{L1, k}^R|^2 \ell(x_{L1, k}^H - x_{L1, k}^R) \}.
\]

User \(u_1^H \) can successfully decode signal \(s_{L1}(t) \) in time slot \(t \) if the received SNR is not less than the reception threshold, i.e.,

\[
\Gamma_{HRb}(t) = \frac{P_S |h_{L1}^H(t)|^2 \ell(x_{L1}^H) + P_L |g_{L1, k}^R|^2 \ell(x_{L1, k}^R - x_{L1}^R)}{\sigma^2} \geq \Gamma_{th}^H,
\]

where \(\Gamma_{HRb}(t) \) denotes the SNR of signal \(s_{L1}(t) \) observed at user \(u_1^R \) in time slot \(t \) when user \(u_b^R \) acts as the full-duplex relay.

The probability of successful packet transmission is the complement of the outage probability. In this context, an outage occurs when high-priority user \(u_1^H \) fails to decode
the packet after constructively combining the signals transmitted by the base station and the best relay \(u_k^R \). By selecting the best relay, this outage event is equivalent to the event that all qualified relays are in outage, which means that no low-priority user satisfies the following condition:

\[
\Gamma_{H_{\text{th}}}^{\text{FC}}(t) \geq \Gamma_{H_{\text{th}}}^{\text{H_{\text{IR}}k}}(t) \geq \Gamma_{H_{\text{th}}} \quad \forall u_k^R \in U^L. \quad (31)
\]

The following lemma presents the stability condition for queue \(Q_{H_1} \) in dominant system \(\Phi_{\text{FCN}}^2 \).

Lemma 5: In dominant system \(\Phi_{\text{FCN}}^2 \), queue \(Q_{H_1} \) is stable if

\[
\lambda_{H_{\text{t}}} < \mu_{\text{FCN}}^2 \left(1 - \frac{\lambda_{L_{\text{t}}}}{\mu_{\text{FCN}}^2} \right) q_{H_{\text{t}}}^\text{FC} + \frac{\lambda_{L_{\text{t}}}}{\mu_{\text{FCN}}^2} \left(q_{H_{\text{t}}}^N(\alpha_{H_{\text{t}}}) + q_{H_{\text{t}}}^\text{FCN}(\alpha_{H_{\text{t}}}) \right), \quad (32)
\]

where \(\mu_{\text{FCN}}^2 = q_{L_{\text{t}}|H_{\text{t}}}^\text{FCN}(\alpha_{L_{\text{t}}}) - q_{H_{\text{t}}}^\text{FCN}(\alpha_{H_{\text{t}}}) \) and \(q_{H_{\text{t}}}^\text{FCN}(\alpha_{H_{\text{t}}}) \) are given in (49) and (52), respectively, and

\[
q_{H_{\text{t}}}^\text{FC} = \exp \left(-\rho_{H_{\text{t}}} \left(1 + r_{H_{\text{t}}}^\beta \right) \right) \sum_{j=0}^{K} \binom{K}{j} (-1)^{j+1} \left(C(1) \right)^j \times \left(1 - \exp \left(-\rho_{H_{\text{t}}} \left(1 + r_{H_{\text{t}}}^\beta \right) \right) \right)^{-j}. \quad (33)
\]

Proof: Please refer to Appendix F.

After deriving the average service rates of queues \(Q_{H_1} \) and \(Q_{L_1} \), the stable throughput region of dominant system \(\Phi_{\text{FCN}}^2 \), denoted as \(\mathcal{R}_{\text{FCN}}^2 \), can be expressed as

\[
\mathcal{R}_{\text{FCN}}^2 = \left\{ (\lambda_{H_{\text{t}}}, \lambda_{L_{\text{t}}}) : \frac{\lambda_{H_{\text{t}}}}{q_{H_{\text{t}}}^\text{FC}} + \frac{\lambda_{L_{\text{t}}}}{q_{H_{\text{t}}}^\text{FC}} \left(q_{H_{\text{t}}}^N(\alpha_{H_{\text{t}}}) - q_{H_{\text{t}}}^\text{FCN}(\alpha_{H_{\text{t}}}) \right) \lambda_{L_{\text{t}}} < 1, \right. \left. \text{for } 0 \leq \lambda_{L_{\text{t}}} < q_{H_{\text{t}}}^\text{FCN}(\alpha_{H_{\text{t}}}) \right\}. \quad (34)
\]

According to (34), stable throughput region \(\mathcal{R}_{\text{FCN}}^2 \) depends on the number of low-priority users and the self-interference cancelation coefficient.

Based on the above derivations, the following theorem presents the stable throughput region of the cooperative NOMA system with full-duplex relaying \(\Phi_{\text{FCN}}^2 \).

Theorem 2: The stable throughput region of the cooperative NOMA system with full-duplex relaying \(\Phi_{\text{FCN}}^2 \) for fixed power allocation coefficients, denoted as \(\mathcal{R}_{\text{FCN}}^2 \), is the union of the stable throughput regions of dominant systems \(\Phi_{\text{FCN}}^1 \) and \(\Phi_{\text{FCN}}^3 \), i.e., \(\mathcal{R}_{\text{FCN}}^2 = \mathcal{R}_{\text{FCN}}^1 \cup \mathcal{R}_{\text{FCN}}^2 \).

Proof: The proof is similar to that of Theorem 1, and hence, it is omitted here.

Similarly, we resort to numerical analysis to obtain the full stable throughput region in Section VI.

V. COMPARISON OF NOMA AND OMA

In this section, we derive the stable throughput region of a baseline OMA scheme and the conditions under which the proposed NOMA schemes achieve larger stable throughput regions than the baseline OMA scheme.

A. Baseline Orthogonal Multiple Access Scheme

We consider a time division multiple access (TDMA) based OMA system, denoted as \(\Phi_{\text{OMA}} \), as a baseline, where base station \(S \) transmits one packet in one time slot. As queues \(Q_H \) and \(Q_L \) do not interact with each other when OMA is utilized, the stability conditions of these two queues can be separately analyzed. Base station \(S \) transmits the first packet from queue \(Q_H \) to high-priority user \(u_{H_{\text{t}}}^1 \) whenever queue \(Q_H \) is not empty, regardless of the status of queue \(Q_L \). The average service rate of queue \(Q_H \) in OMA system \(\Phi_{\text{OMA}} \) is

\[
\mu_{\text{OMA}} = \exp \left(-\rho_{H_{\text{t}}} \left(1 + r_{H_{\text{t}}}^\beta \right) \right). \quad (35)
\]

Fig. 2: Stable throughput regions of OMA system \(\Phi_{\text{OMA}} \), opportunistic NOMA system \(\Phi_{\text{ON}} \), and cooperative NOMA system with full-duplex relaying \(\Phi_{\text{FCN}}^2 \).
\[O = (0, 0), \ A = (\mu_{H}^{OMA}, 0), \ B = (0, q_{L1}^{OMA}), \ C = (q_{H1}^{ON1}, \xi_{L1}[H1](\alpha_{L})), \ D = (0, \eta), \ E = (q_{H1}^{FCN}, 0), \text{ and } F = (q_{H1}^{N\alpha} + q_{H1}^{FCN}(\alpha_{H}), q_{L1}^{FCN}(\alpha_{L})), \text{ where } \mu_{H}^{OMA} = \exp\left(-\rho_{H} + \frac{1}{\beta_{H}}\right) \text{ and } \xi = \exp\left(-\frac{1}{\beta_{H}}\right).

Proposition 1: The cooperative NOMA scheme with full-duplex relaying achieves a larger stable throughput region than OMA, i.e., \(\mathcal{R}^{OMA} \subset \mathcal{R}^{FCN} \), when the following conditions hold:

\[
q_{L1}^{ON} > q_{L1}^{OMA} \left(1 - \frac{\mu_{H}^{OMA}}{q_{H1}^{N\alpha} + q_{H1}^{FCN}(\alpha_{H})}\right),
\]

(36)

\[
q_{L1,2}^{ON} > q_{L1}^{OMA}.
\]

(37)

Proof: Please refer to Appendix G.

As \(q_{L1}[H1](\alpha_{L}), q_{H1}^{N\alpha}(\alpha_{H}), \) and \(q_{H1}^{FCN}(\alpha_{H}) \) are functions of \(\alpha_{L} \), it is very difficult to derive a closed-form condition in terms of \(\alpha_{L} \) from (36). Nonetheless, we can obtain all possible values of \(\alpha_{L} \) that lead to \(\mathcal{R}^{OMA} \subset \mathcal{R}^{FCN} \) by evaluating (36) numerically, as (37) does not depend on \(\alpha_{L} \). Moreover, the stable throughput region of the cooperative NOMA scheme with full-duplex relaying can be maximized by fixing \(\lambda_{H} \) and then maximizing the corresponding average service rate of queue \(Q_{L} \), i.e., \(\mu_{L}^{FCN1} \) or \(\mu_{L}^{FCN2} \), by optimizing the value of \(\alpha_{L} \).

Proposition 2: The opportunistic NOMA scheme achieves a larger stable throughput region than OMA, i.e., \(\mathcal{R}^{OMA} \subset \mathcal{R}^{ON} \), when \(q_{L1}^{ON} > q_{L1}^{OMA} \) and \(q_{L1}^{ON} > q_{L1}^{OMA} \left(1 - \frac{\mu_{L}^{FCN}}{q_{H1}^{N\alpha} + q_{H1}^{FCN}(\alpha_{H})}\right) \). \(q_{L1}^{FCN} \) hold.

Proof: The proof is similar to that of Proposition 1, and hence, it is omitted here.

VI. NUMERICAL RESULTS

In this section, we evaluate the stable throughput regions of opportunistic NOMA and cooperative NOMA with full-duplex relaying and compare them with the stable throughput region of baseline OMA. The radius of the circular network coverage area is \(r = 1.3 \) km, where \(M = 4 \) high-priority users are located \(r_{H} = 1.2 \) km away from base station \(S \). The transmit powers (i.e., \(P_{S} \) and \(P_{L} \)) and noise power \(\sigma^{2} \) are set to be 1 W and \(-100\) dBm, respectively. We consider Rayleigh fading channels and the path loss exponent \(\beta \) is set to be 4. The power allocation coefficients of the far and near users when NOMA is enabled to serve the first two packets from queue \(Q_{L} \), \((\alpha_{1}^{2}, \alpha_{2}^{2}) \), are set to be \((0.8, 0.2)\).

Fig. 3 shows the impact of the number of low-priority users \(K \) and self-interference cancelation coefficient \(\zeta \) on the probabilities of successful packet reception at the high-priority users when cooperative NOMA and OMA are employed (i.e., \(q_{H1}^{N\alpha}(\alpha_{H}) + q_{H1}^{FCN}(\alpha_{H}) \)). The simulation (Sim) results match the analytical (Ana) results well, which validates the performance analysis. We observe that \(q_{H1}^{FCN}(\alpha_{H}) \) increases with \(K \), as the probability of selecting a full-duplex relay with good channel condition with respect to user \(u_{1}^{H} \) becomes higher because of the spatial diversity gain. On the other hand, \(q_{H1}^{N\alpha}(\alpha_{H}) + q_{H1}^{FCN}(\alpha_{H}) \) does not change with \(K \), as the intended receiver of the first packet from queue \(Q_{L} \) is selected to act as a full-duplex relay when it can successfully decode signal \(s_{1}^{H}(t) \) received from base station \(S \), regardless of its channel condition with respect to user \(u_{1}^{H} \). With better self-interference cancelation (i.e., a smaller value of \(\zeta \)), the probability of successful packet reception at user \(u_{1}^{H} \) increases for both cooperative NOMA and OMA, as the SINR of signal \(s_{1}^{H}(t) \) at the low-priority users becomes larger and in turn the probability of selecting a reliable full-duplex relay increases.

Fig. 4 illustrates the impact of the distance between the base station and the high-priority users, \(r_{H} \), on the probabilities of successful packet reception at the high-priority users (i.e., \(q_{H1}^{FCN} \) and \(q_{H1}^{FCN}(\alpha_{H}) + q_{H1}^{FCN}(\alpha_{H}) \)). As \(r_{H} \) increases, both probabilities decrease because of the larger path loss. As the relay with the best channel condition with respect to user \(u_{1}^{H} \) is selected for cooperative NOMA, the gap between \(q_{H1}^{FCN} \) and \(q_{H1}^{FCN}(\alpha_{H}) + q_{H1}^{FCN}(\alpha_{H}) \) becomes larger as \(r_{H} \) increases. In addition, \(q_{H1}^{FCN} \) is always larger than \(q_{H1}^{N\alpha}(\alpha_{H}) + q_{H1}^{FCN}(\alpha_{H}) \) because of the higher base station transmit power for the high-priority user as well as the higher spatial diversity gain due to relay selection.
Fig. 5 plots the stable throughput region for various values of threshold θ. For opportunistic NOMA system $\Phi_{\text{ON}}^\text{OMA}$ and OMA system $\Phi_{\text{OMA}}^\text{OMA}$, the maximum achievable λ_H is the same, as the stable throughput region of opportunistic NOMA system $\Phi_{\text{ON}}^\text{ON}$ is equal to the union of the stable throughput regions of dominant systems $\Phi_{\text{ON}}^\text{ON}$. The stable throughput region of opportunistic NOMA system $\Phi_{\text{ON}}^\text{ON}$ depends on θ. As θ increases, the probability of enabling NOMA transmission decreases, which reduces the transmission opportunities of the low-priority users. For larger θ, the packet retransmission probability of high-priority users decreases, which in turn provides more transmission opportunities to the low-priority users. With an appropriate choice of θ to balance these two aspects, e.g., $\theta = 2.5\rho_H$ in Fig. 5, opportunistic NOMA can achieve a much larger stable throughput region than OMA. By enabling the low-priority users to act as full-duplex relays and assist the high-priority users, the maximum achievable λ_H of the cooperative NOMA system with full-duplex relaying $\Phi_{\text{FCN}}^\text{ON}$ is even larger than that of opportunistic NOMA system $\Phi_{\text{ON}}^\text{ON}$ due to the cooperative diversity gain. The enhanced packet reception reliability for the high-priority users can be exploited to provide more transmission opportunities to the low-priority users. Thereby, the stable throughput region is further enlarged.

Fig. 6 shows the stable throughput region for various values of transmit power allocation coefficients $(\alpha_{\text{ON}}^2, \alpha_L^2)$. When $(\alpha_{\text{ON}}^2, \alpha_L^2) = (0.7, 0.3)$, condition (36) does not hold, and hence the stable throughput region of the cooperative NOMA system with full-duplex relaying $\Phi_{\text{FCN}}^\text{ON}$ is not larger than that of OMA system Φ_{OMA}. This is because the value of α_{ON}^2 is not large enough for the low-priority users to successfully decode the signals intended for the high-priority users, which is the prerequisite for performing SIC. By increasing α_{ON}^2 to 0.8, the conditions given in Propositions 1 and 2 hold, and hence the stable throughput region of both opportunistic NOMA and cooperative NOMA with full-duplex relaying become larger than that of OMA. However, by further increasing α_{ON}^2 from 0.8 to 0.85, the stable throughput region of the cooperative NOMA system with full-duplex relaying $\Phi_{\text{FCN}}^\text{ON}$ decreases.

This is because the increased transmission opportunities of the low-priority users cannot compensate for the reduction of successful packet reception at the low-priority users due to the lower transmit power.

Fig. 7 shows the impact of threshold θ and power allocation coefficients $(\alpha_{\text{ON}}^2, \alpha_L^2)$ on the average service rate of queue Q_L in opportunistic NOMA system versus threshold θ and power allocation coefficients $(\alpha_{\text{ON}}^2, \alpha_L^2)$ when $\lambda_H = 0.2$, $\Gamma_{\text{ON}} = \Gamma_{\text{OMA}} = 2$, and $K = 4$. The average service rate of queue Q_L increases with θ when $\theta < 0.5 \times 10^{-12}$. By enabling NOMA when the channel gain between base station S and the high-priority users is larger, fewer packet retransmissions are required for high-priority users, which in turn improves the transmission opportunities of low-priority users. The average service rate of queue Q_L decreases with θ when $\theta > 0.5 \times 10^{-12}$ and converges to 0.795, as the probability that NOMA is enabled decreases. By increasing α_{ON}^2 to 0.9, the optimal threshold θ that maximizes the average service rate of queue Q_L becomes smaller, as allocating more transmit power to the high-priority users allows NOMA to be used for smaller channel gain.
The opportunistic NOMA system does not depend on \(K \) from queue \(Q \). When the reception thresholds are smaller, the probability of successful packet reception at each user increases, as the probability that NOMA can serve the packets of both NOMA systems increase with \(K \). Moreover, we proposed a cooperative NOMA scheme requiring only limited CSI at the base station. Hence, the performance gap between the maximum achievable \(\lambda_H \) of the cooperative NOMA system with full-duplex relaying increases with \(K \), as more low-priority users are available and the probability of selecting a reliable relay becomes higher. Thus, the full stable throughput regions of both NOMA systems increase with \(K \).

Fig. 10 shows the impact of imperfect CSI estimation on the full stable throughput region. Adopting the model for imperfect CSI in [35], we have

\[h_i^n(t) = \hat{h}_i^n(t) + e_i^n(t), \]

where \(e_i^n(t) \) is the complex Gaussian channel estimation error at user \(u_i \) with zero mean and variance \(\sigma_i^n_2 \) in time slot \(t \). The value of variance \(\sigma_i^n_2 \) reflects the accuracy of channel estimation. We first obtain the average service rates of queues \(Q_H \) and \(Q_L \) for all considered dominant systems via simulations, which are then used to plot the stable throughput regions in Fig. 10. Results show that, by increasing the value of \(\sigma_i^n_2 \) from 0 to 0.01, the full stable throughput regions of all considered schemes become smaller. This is because channel estimation errors lead to additional interference as in the SINR expression, which reduces the probability of successful packet reception at each user. In addition, the impact of imperfect CSI on the performance of NOMA is greater compared to OMA, as the SIC at the user being allocated a lower transmit power in NOMA is negatively affected by imperfect CSI.

VII. Conclusion

In this paper, we studied the performance of downlink NOMA transmission with dynamic traffic arrival and spatially random users of different priorities. To reduce the adverse effect of NOMA on high-priority users, we proposed an opportunistic NOMA scheme requiring only limited CSI at the base station. Moreover, we proposed a cooperative NOMA scheme with full-duplex relaying, where the low-priority users assist the high-priority users to enhance the network performance. By utilizing tools from queueing theory and stochastic geometry, we characterized the stable throughput regions of both proposed NOMA schemes by constructing dominant systems to decouple the interacting queues. Simulation results validated the performance analysis. With appropriate parameter setting,
the proposed NOMA schemes can significantly improve the
transmission opportunities and enhance the stable throughput
region compared to OMA.

There are several interesting topics for future work. First,
the performance analysis of cooperative NOMA with full-
duplex relaying can be extended to multi-cell networks,
where the interference from the base stations and the full-
duplex relays in other cells has to be taken into account.
Second, the proposed performance analysis framework can be
extended to the case where each user exploits retransmission
diversity [36]. Third, the proposed framework can be extended
to the case where more than two users are paired for NOMA
transmission.

APPENDIX A
PROOF OF LEMMA 1

When OMA is enabled, the probability of successful packet
reception at user u_1^H is given by

$$q_{H1}^{OMA} (\theta) = P \left(\frac{\rho H}{\ell(x_H^1)} \leq \frac{\theta}{\ell(x_H^1)} \right)$$

(a) $\exp \left(-\rho_H \left(1 + r_H^\beta\right)\right) - \exp \left(-\theta \left(1 + r_H^\beta\right)\right)$,

if $\theta > \rho_H$, otherwise, $q_{H1}^{OMA} (\theta) = 0$, where (a) follows from
the exponential distribution of x_H^1.

On the other hand, when NOMA is enabled, the probability
of successful packet reception at high-priority user u_1^H can be
expressed as

$$q_{H1|L1}^{ON} (\alpha_H, \theta) = P \left(x_{H1}^1(t) \geq \frac{\rho H}{\alpha_H^2 - \Gamma_{th} \alpha_L^2} \frac{\theta}{\ell(x_H^1)} \right)$$

$\exp \left(-\max \left(\frac{\rho H}{\alpha_H^2 - \Gamma_{th} \alpha_L^2}, \theta\right) \left(1 + r_H^\beta\right)\right)$,

if $\alpha_H^2 > \Gamma_{th} \alpha_L^2$, otherwise, $q_{H1|L1}^{ON} (\alpha_H, \theta) = 0$.

By substituting (38) and (39) into (5), the average service
rate of queue Q_H is given by

$$\mu_H = E_{x_{H1}^1} \left[\frac{\rho H}{\alpha_H^2 - \Gamma_{th} \alpha_L^2} \frac{\ell(x_H^1)}{\ell(x_H^1)} \right]$$

(a) $\frac{4}{r_H^\beta} \int_0^r \exp \left(-N_2 \left(1 + r_H^\beta\right)\right) \left(r_H^\beta\right)^3 \, dr_H^\beta$

$\frac{4}{r_H^\beta} N_1^{-2/\beta} \exp \left(-N_1\right) \gamma \left(\frac{2}{\beta}, N_1 r_H^\beta\right)$.

When NOMA is enabled, the probability of successful packet
reception at user u_1^L is given by

$$q_{L1|L1}^{ON} (\alpha_L) = P \left(\Gamma_{L1|L1} (t, \alpha_L) \geq \Gamma_{L1} \right)$$

$= E_{x_{L1}^1} \left[\frac{\rho L}{\ell(x_L^1)} \right]$

$\frac{4}{r_L^\beta} \int_0^r \exp \left(-N_3 \left(1 + r_L^\beta\right)\right) \left(r_L^\beta\right)^3 \, dr_L^\beta$

$\frac{4}{r_L^\beta} N_3^{-2/\beta} \exp \left(-N_3\right) \gamma \left(\frac{2}{\beta}, N_3 r_L^\beta\right)$.

Similarly, the PDF of the distance between near user u_1^L and base station S is given by

$$f(r_L^L) = 4 \frac{r_L^L}{r_L^2} \left(1 - \frac{(r_L^L)^2}{r_L^2}\right), \quad 0 \leq r_L^L \leq r_L$$

When NOMA is enabled, the probability of successful packet
reception at user u_1^L is given by

$$q_{L1|L1}^{ON} (\alpha_L) = P \left(\Gamma_{L1|L1} (t, \alpha_L) \geq \Gamma_{L1} \right)$$

$= E_{x_{L1}^1} \left[\frac{\rho L}{\ell(x_L^1)} \right]$

$\frac{4}{r_L^\beta} \int_0^r \exp \left(-N_3 \left(1 + r_L^\beta\right)\right) \left(r_L^\beta\right)^3 \, dr_L^\beta$

$\frac{4}{r_L^\beta} N_3^{-2/\beta} \exp \left(-N_3\right) \gamma \left(\frac{2}{\beta}, N_3 r_L^\beta\right)$.

According to (40), we set $\theta > \rho_H$ to achieve a higher value
of μ_H^{ON1}. By Loynes’ theorem [27], queue Q_H is stable if (6)
holds.

APPENDIX B
PROOF OF LEMMA 2

The probability of successful packet reception at low-priority
user u_1^L when paired with high-priority user u_1^H to
perform NOMA is given by

$$q_{L1|H1}^{ON} (\alpha_L)$$

$= P \left(\Gamma_{L1|H1} (t, \alpha_L) \geq \Gamma_{L1} \right)$

$= E_{x_{L1}^1} \left[\exp \left(-N_3 \ell(x_L^1)\right) \right]$

$= \frac{4}{r_L^\beta} N_3^{-2/\beta} \exp \left(-N_3\right) \gamma \left(\frac{2}{\beta}, N_3 r_L^\beta\right)$.

Similarly, the PDF of the distance between near user u_1^L and base station S is given by

$$f(r_L^L) = 4 \frac{r_L^L}{r_L^2} \left(1 - \frac{(r_L^L)^2}{r_L^2}\right), \quad 0 \leq r_L^L \leq r_L$$

When NOMA is enabled, the probability of successful packet
reception at user u_1^L is given by

$$q_{L1|L1}^{ON} (\alpha_L)$$

$= P \left(\Gamma_{L1|L1} (t, \alpha_L) \geq \Gamma_{L1} \right)$

$= E_{x_{L1}^1} \left[\exp \left(-N_3 \ell(x_L^1)\right) \right]$

$= \frac{4}{r_L^\beta} N_3^{-2/\beta} \exp \left(-N_3\right) \gamma \left(\frac{2}{\beta}, N_3 r_L^\beta\right)$.
When OMA is enabled, the probability of successful packet reception at user u_1^H is given by

$$q_{\text{OMA}}^{\text{OMA}} = \mathbb{P}(\Gamma_{11}(t, 1) \geq \Gamma_{\text{th}}) = \frac{2}{\rho L} \rho L^{-2/\beta} \exp(-\rho L \gamma) \left(\frac{2}{\beta}, \rho L \gamma\right).$$

By substituting (9), (47), and (48) into (7), the average service rate of queue Q_L in dominant system Φ^{OMA} can be derived. By Loyne’s theorem, queue Q_L is stable if (8) holds.

\[\text{PROOF OF THEOREM 1}\]

APPENDIX C

Our proof is based on a similar technique as the proofs in [16]–[18]. The dominant systems (i.e., Φ^{OMA} and Φ^{ON}) are modifications of the original opportunistic NOMA system Φ^{ON}. The queue lengths in the dominant systems are never shorter than the queue lengths in the original opportunistic NOMA system Φ^{ON} as an empty queue can contribute dummy packets. The transmission of dummy packets reduces the probability of successful packet reception by generating co-channel interference, but does not contribute to the throughput. Hence, the stability condition obtained for the dominant systems (i.e., Φ^{OMA} and Φ^{ON}) is sufficient for the stability of the original opportunistic NOMA system Φ^{ON}.

As only two queues are considered, the stability condition of the original opportunistic NOMA system Φ^{ON} is determined by the two parallel dominant systems (i.e., Φ^{OMA} and Φ^{ON}). In particular, dominant systems Φ^{OMA} and Φ^{ON} explore all possible choices of the average arrival rates λ_L and λ_H that can lead to a stable system, respectively. In dominant system Φ^{OMA}, some λ_L would cause queue Q_L to be always non-empty.

As long as queue Q_L always has packets to transmit, queue Q_L does not contribute dummy packets and hence the behavior of dominant system Φ^{OMA} is identical to that of the original opportunistic NOMA system Φ^{ON}. As a result, dominant system Φ^{OMA} and the original opportunistic NOMA system Φ^{ON} are indistinguishable at the boundary of the stability region (i.e., line CD in Fig. 2). Similarly, dominant system Φ_2^{ON} and the original opportunistic NOMA system Φ^{ON} are also indistinguishable at the boundary of the stability region (i.e., line AC in Fig. 2). Similar indistinguishability arguments are used in [16]–[18]. Thereby, the stability condition obtained for the dominant systems (i.e., Φ^{OMA} and Φ^{ON}) is also necessary for the stability of the original opportunistic NOMA system Φ^{ON}. As a result, we have $\mathcal{R}^{\text{ON}} = \mathcal{R}_1^{\text{ON}} \cup \mathcal{R}_2^{\text{ON}}$.

\[\text{APPENDIX D}\]

\[\text{PROOF OF LEMMA 3}\]

Due to the independence of events $\{\Gamma_{11}^{\text{OMA}}(t, \alpha_H) \geq \Gamma_{\text{th}}\}$ and $\{\Gamma_{11}^{\text{FCN}}(t, \alpha_H) < \Gamma_{\text{th}}\}$, the probability of successful packet reception at user u_1^H when NOMA is enabled, denoted as $q_{\text{H1}}^{\text{OMA}}(\alpha_H)$, is given by

\[q_{\text{H1}}^{\text{OMA}}(\alpha_H) = \mathbb{P}(\Gamma_{11}^{\text{OMA}}(t, \alpha_H) \geq \Gamma_{\text{th}}) = \exp\left(-\frac{\rho_H}{\alpha_H - \Gamma_{\text{th}} \gamma} \frac{Z_4^{-1/2}}{\beta} \exp\left(\frac{Z_4}{\beta} \rho L \gamma\right)\right).
\]

If $\alpha_H^2 > \Gamma_{\text{th}}^2$, otherwise, $q_{\text{H1}}^{\text{OMA}}(\alpha_H) = 0$.

The probability of successful packet reception at user u_1^H when cooperative NOMA is enabled, denoted as $q_{\text{H1}}^{\text{FCN}}(\alpha_H)$, can be expressed as

\[q_{\text{H1}}^{\text{FCN}}(\alpha_H) \equiv a \mathbb{E}_{x_1^H} \left[\mathbb{P}\left(\left(\alpha_H^2 - \Gamma_{\text{th}}^2\right) P_S |h_1^H(t)|^2 \ell(x_1^H) + P_L |g_{11}^{\text{HL}}(t)|^2 \ell(x_1^H - x_1^L) \geq \Gamma_{\text{th}}^2 \rho \right)\right].
\]

\[\text{PROOF OF LEMMA 5}\]

\[\text{PROOF OF LEMMA 6}\]

\[\text{PROOF OF LEMMA 7}\]

\[\text{PROOF OF LEMMA 8}\]

\[\text{PROOF OF LEMMA 9}\]

\[\text{PROOF OF LEMMA 10}\]

\[\text{PROOF OF LEMMA 11}\]

\[\text{PROOF OF LEMMA 12}\]
where (a) follows from the independent channel fading assumption across different links.

By conditioning on location coordinate x_1^t, we obtain (51), as shown at the bottom of previous page.

By substituting (51) into (50), we have

$$q_{H1}^{FCN}(\alpha_H) = \mathbb{E}_{x_1^t} \left[\left(\frac{\exp \left(\frac{1}{\rho_H} \frac{\sigma^2}{\alpha_H^2 \cdot \rho_L} \right) \Gamma_{H1} - N_5}{\rho_H \Gamma_{H1}} \right) + N_5 \right] \times \exp \left(\frac{N_4}{\Gamma_{H1}} \right) \times C(\alpha_H) + \frac{2}{r^2 \beta} N_4^{-2/\beta} \exp(-N_4) \gamma \left(\frac{2}{\beta}, N_4 \right)^{\beta \rho \gamma}.$$

where $C(\alpha_H)$ is given in (21), which can be calculated numerically using commercial software (e.g., Mathematica).

By substituting (49) and (52) into (18), we obtain the average service rate of queue Q_H. Hence, queue Q_H is stable if $\lambda_H < \mu_{H1}^{FCN} = q_{H1}^{N}(\alpha_H) + q_{H1}^{FCN}(\alpha_H)$.

APPENDIX E

PROOF OF LEMMA 4

The probability of successful packet reception at user u_1^t when cooperative NOMA is enabled, if $\alpha_H^2 > \Gamma_{th}^2$, can be expressed as

$$P \left(\Gamma_{H1-L1}^{FCN}(t, \alpha_H) > \Gamma_{th}^{H}, \Gamma_{L1}^{FCN}(t, \alpha_L) > \Gamma_{th}^{L1} \right) = \mathbb{E}_{x_1^t} \left[\exp \left(-\max \left(\frac{\Gamma_{H1}^{H}}{\lambda_H \alpha_H^2}, \frac{\Gamma_{L1}^{L1}}{\lambda_L \alpha_L^2} \right) \frac{\zeta P_L + \sigma^2}{\lambda_H^2} \Gamma_{H1}^{H} \right) \right]$$

$$= \frac{2}{r^2 \beta} N_4^{-2/\beta} \exp(-N_6) \gamma \left(\frac{2}{\beta}, N_4 \right)^{\beta \rho \gamma}.$$

When NOMA is enabled, the probability of successful packet reception at user u_1^t is given by (53), as shown at the top of this page, where $\alpha_H^2 > \Gamma_{th}^2$. By substituting (24), (47), and (48) into (22), we can obtain the average service rate of queue Q_L. Hence, queue Q_L is stable if $\lambda_L < \mu_{L1}^{FCN} = \frac{\alpha_H}{\mu_{L1}^{FCN}} q_{L1|H1}(\alpha_H) + \left(1 - \frac{\alpha_H}{\mu_{L1}^{FCN}} \right) \eta$, where η is given in (10).

APPENDIX F

PROOF OF LEMMA 5

Given that there are K low-priority users, we have

$$q_{H1}^{FC} = 1 - P \left(\Gamma_{H1}(t, 1) < \Gamma_{th}^H \right) \times \mathbb{E}_{z_1} \left[\prod_{u_k^t \in \mathcal{L}} \left[1 - P \left(\Gamma_{H1-Rk}^F(t) \geq \Gamma_{th}^H \right) \right] \times P \left(\Gamma_{H1-Rk}^F(t) \geq \Gamma_{th}^H \left| \Gamma_{H1}(t, 1) < \Gamma_{th}^H \right) \right] \right] \times \mathbb{E}_{z_1} \left[\prod_{u_k^t \in \mathcal{L}} \left[1 - P \left(\Gamma_{H1-Rk}^F(t) \geq \Gamma_{th}^H \right) \right] \times P \left(\Gamma_{H1-Rk}^F(t) \geq \Gamma_{th}^H \left| \Gamma_{H1}(t, 1) < \Gamma_{th}^H \right) \right] \right].$$

where $P \left(\Gamma_{H1}(t, 1) < \Gamma_{th}^H \right) = 1 - \exp \left(-\rho_H \left(1 + r_1^H \right) \right)$. As the K low-priority users are uniformly distributed within the network coverage area, we have

$$\mathbb{E}_{z_1} \left[\prod_{u_k^t \in \mathcal{L}} \left[1 - P \left(\Gamma_{H1-Rk}^F(t) \geq \Gamma_{th}^H \right) \right] \times P \left(\Gamma_{H1-Rk}^F(t) \geq \Gamma_{th}^H \left| \Gamma_{H1}(t, 1) < \Gamma_{th}^H \right) \right] \right] \leq \left(\frac{1}{r^2} \int_0^r \int_0^{2\pi} \left(1 - P \left(\Gamma_{H1-Rk}^F(t) \geq \Gamma_{th}^H \right) \right) d\theta d\phi \right)^K.$$
By substituting (55) into (54), we have
\[
\tilde{q}^{\text{FC}}_{\text{H1}} = 1 - \left(1 - \exp\left(-\rho_H \left(1 + r_H^{\beta_H}\right)\right)\right) \\
\times \left(1 - \frac{C(1)}{1 - \exp\left(-\rho_H \left(1 + r_H^{\beta_H}\right)\right)}\right)^K \\
\Rightarrow \exp\left(-\rho_H \left(1 + r_H^{\beta_H}\right)\right) + \sum_{j=1}^{K} \frac{K}{j} (-1)^{j+1} (C(1))^j \\
\times \left(1 - \exp\left(-\rho_H \left(1 + r_H^{\beta_H}\right)\right)^{1-j}, \quad (56)
\]
where (a) follows from the binomial expansion. By substituting (56) into (27), we can derive the average service rate of queue \(Q_H\) in dominant system \(\Phi^2_{\text{FCN}}\). Hence, queue \(Q_H\) is stable if \(\lambda_H < \mu^{\text{FCN}}_{\text{OMA}} = (1 - \lambda_q / \mu^{\text{FCN}}_{H1}) \mu^\text{FC} + \lambda_L / \mu^{\text{FCN}}_{H1} \). Hence, (\ref{eq:17}) holds for all coordinates of points A and E. According to (56), condition \(\tilde{q}^{\text{FC}}_{\text{H1}} > \mu^{\text{OMA}}_H\) always holds. In addition, to guarantee that point \(F\) is on the right side of line \(AB\), the Y-coordinate of point \(F\) should be larger than the Y-coordinate of the point that is on line \(AB\) and has the same X-coordinate as point \(F\). Hence, condition \(\tilde{q}^{\text{FCN}}_{\text{H1}||\text{H1}} (\lambda_q) > \tilde{q}^{\text{OMA}}_{\text{L1}}(1 - \tilde{q}^{\text{OMA}}_{\text{L1}}(\alpha_H))\) should hold, where \(\alpha_H^2 = 1 - \alpha_H^{\beta_H}\). Similarly, to ensure that point \(D\) is on the right side of line \(AB\), condition \(\eta > \tilde{q}^{\text{OMA}}_{\text{L1}}\) should hold, equivalent to \(\tilde{q}^{\text{OMA}}_{\text{L1}||\text{L2}} > \tilde{q}^{\text{OMA}}_{\text{L1}}\), should hold, where \(\tilde{q}^{\text{OMA}}_{\text{L1}||\text{L2}}\) is given in (47). As a result, cooperative NOMA with full-duplex relaying achieves a larger stable throughput region than OMA if both (36) and (37) hold.

REFERENCES

Yong Zhou (S’13–M’16) received the B.Sc. and M.Eng. degrees from Shandong University, Jinan, China, in 2008 and 2011, respectively, and the Ph.D. degree from the University of Waterloo, Waterloo, ON, Canada, in 2015. From 2015 to 2017, he was a Post-Doctoral Research Fellow with the Department of Electrical and Computer Engineering, The University of British Columbia, Vancouver, Canada. He is currently an Assistant Professor with the School of Information Science and Technology, ShanghaiTech University, China. His research interests include performance analysis and resource allocation of 5G networks. He served as a technical program committee member for several conferences.

Vincent W.S. Wong (S’94–M’00–SM’07–F’16) received the B.Sc. degree from the University of Manitoba, Winnipeg, MB, Canada, in 1994, the M.A.Sc. degree from the University of Waterloo, Waterloo, ON, Canada, in 1996, and the Ph.D. degree from The University of British Columbia (UBC), Vancouver, BC, Canada, in 2000. From 2000 to 2001, he was a Systems Engineer with Microsemi. He joined the Department of Electrical and Computer Engineering, UBC, in 2002, where he is currently a Professor. His research areas include protocol design, optimization, and resource management of communication networks, with applications to wireless networks, smart grid, mobile cloud computing, and Internet of Things. He received the 2014 UBC Killam Faculty Research Fellowship. He is an Editor of the IEEE TRANSACTIONS ON COMMUNICATIONS. He served as a Guest Editor for the IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS and the IEEE WIRELESS COMMUNICATIONS. He also served on the editorial boards for the IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY and the Journal of Communications and Networks. He was a Technical Program Co-Chair of the IEEE SmartGridComm 2014 and a Symposium Co-Chair of the IEEE ICC 2018, the IEEE SmartGridComm 2013, the IEEE SmartGridComm 2017, and the IEEE Globecom 2013. He is the Chair of the IEEE Vancouver Joint Communications Chapter. He served as a Chair for the IEEE Communications Society Emerging Technical Sub-Committee on Smart Grid Communications.

Robert Schober (S’98–M’01–SM’06–F’10) received the Diploma and Ph.D. degrees in electrical engineering from the Friedrich-Alexander University of Erlangen–Nuremberg (FAU), Germany, in 1997 and 2000, respectively. From 2002 to 2011, he was a Professor and the Canada Research Chair with The University of British Columbia (UBC), Vancouver, Canada. Since 2012, he has been an Alexander von Humboldt Professor and the Chair for Digital Communication with FAU. His research interests fall into the broad areas of communication theory, wireless communications, and statistical signal processing.

Dr. Schober is a fellow of The Canadian Academy of Engineering and The Engineering Institute of Canada. He received several awards for his research, including the 2002 Heinz Maier-Leibnitz Award of the German Science Foundation (DFG), the 2004 Innovations Award of the Vodafone Foundation for Research in Mobile Communications, the 2006 UBC Killam Research Prize, the 2007 Wilhelm Friedrich Bessel Research Award of the Alexander von Humboldt Foundation, the 2008 Charles McDowell Award for Excellence in Research from UBC, the 2011 Alexander von Humboldt Professorship, the 2012 NSERC E. W. R. Steacie Fellowship, and the 2017 Wireless Communications Recognition Award by the IEEE Wireless Communications Technical Committee. He is listed as a 2017 Highly Cited Researcher by the Web of Science and a Distinguished Lecturer by the IEEE Communications Society (ComSoc). From 2012 to 2015, he served as the Editor-in-Chief for the IEEE TRANSACTIONS ON COMMUNICATIONS. He is currently the Chair of the Steering Committee of the IEEE TRANSACTIONS ON MOLECULAR, BIOLOGICAL AND MULTI-SCALE COMMUNICATION, an Editorial Board Member of the PROCEEDINGS OF THE IEEE, a Member at Large of the Board of Governors of ComSoc, and the ComSoc Director of Journals.