An Analytical Model Relating FPGA Architecture Parameters to Routability

Joydip Das, Steve Wilton
University of British Columbia

Funded by Altera and NSERC

Why do we need analytical model for FPGA architecture design?
Traditional *Experimental* Approach & Challenges

Challenge 4: How to do better?

Challenge 3: Many Iterations

Challenge 1: Obtaining Suitable Benchmarks

Challenge 2: Creating Experimental CAD Tools

Challenge 5: When we are done, how good is the result?

Can we supplement the experimental approach with analytical techniques?
Overview of Analytical Model

- Lookup-table size, Routing parameters, etc
- Area on FPGA
- Number of 2-input gates

Acceleration FPGA Architecture Design

Analytical Model to Accelerates Architecture Design

- Architecture Description
- Technology Information
- Optimization Goals
- Benchmark Circuits
- Pruning using Models
- Paramaterized Experimental CAD Tools
- Area / Delay / Power Models
This Work:

- We model the Routability as a function of Routing Fabric

Very few works relate Routability to Routing Parameters:

- Brown et al. [1992] models routability for detailed router
- We model routability for global/detailed router [Pathfinder]
- We use Brown’s equations (with necessary modifications) and graph-theoric techniques [Shantikumar ’87, ’88] to upper-bound the routability

This Work:

- Fast Routability Model will allow FPGA Architects to:
 - Investigate wide range of routing fabrics
 - Investigate area-delay trade-off in a timely manner
Validation Results

- Our model follows the trends of VPR
- Our model overestimates VPR Results

Summary

Key Result:

It is possible to model the routability for an FPGA global/detailed router using analytical equations

This Talk:

- Presents such a model for Routability as a Function of Routing Fabric
- Presents the Validation Results