Surgical Instruments

Iron (Fe)

- Crystalline Structure
 - Atoms arranged in a lattice

- Ferrite
 - < 910° C

- Austenite
 - 910°-1400° C

- Melting point
 - 1540° C

Steel

- Iron Alloy
 - Fe + Other atoms
 - At least 50% Fe

- Stainless steel
 - 11% to 30% Cr
 - Up to 2% C
Atomic Structure of Iron Crystal

Body Centered

Ferrite (\(\alpha\) iron)
- Magnetic
- 910° C (threshold temp)

Face Centered

Austenite (\(\gamma\) iron)
- Non-magnetic
- Larger interstitial gaps

Alloys - Substitutional Atoms

- Same size as Fe
- Replace Fe atoms
 - Chromium (Cr)
 - Molybdenum (Mo)
 - Nickel (Ni)
Alloys - Interstitial Atoms

- Smaller than Fe
- Occupy gaps
- Greater solubility in Austenite
- Precipitate out during cooling
 - Carbon (C)
 - Nitrogen (N)

Iron Alloy Atoms

Substitutional Atoms
- Chromium (Cr)
 - Corrosion Resistance
- Molybdenum (Mo)
 - Extra corrosion resistance
- Nickel (Ni)
 - Stabilizes Austenite
 - at room temp
 - Bright finish

Interstitial Atoms
- Carbon (C)
 - Smaller atomic radius than substitutional atoms
- Nitrogen (N)
 - Smaller atomic radius than C
 - Greater solubility than C
Hardening

- **Quench Hardening**
 - Heat to Austenite (face centered / higher C solubility)
 - Add Carbon
 - Cool rapidly in oil bath
 - Rapid transition to Ferrite traps C atoms
 - Excess C atoms disorganize crystal
 - Martensite
 - Disorganized Ferrite (due to trapped C atoms)

- **Work Hardening**
 - Hammer
 - Bend

Softening

Tempering

- Heat Martensite
 - High temperature / short time
 - Austenite surface / Martensite core

- Cool slowly
 - C precipitates from surface
 - Ferrite surface / Martensite core
 - Ductile surface (impact resistant)
 - Small sacrifice in overall hardness

Annealing

- Heat Martensite
 - Austenite throughout

- Cool slowly
 - Carbon precipitates out
 - 0.00005% to 2% (by weight)
 - Ferrite throughout
 - Ductile
Classes of Stainless Steel

- Ferrite
 - Fe + Cr
 - Magnetic
 - Ductile
 - Low Cost

- Martensite
 - Fe + Cr + (C / N)
 - Magnetic
 - Hard
 - Maintains sharp edge

- Austenite
 - Fe + Cr + Ni (+ C / N)
 - Non-magnetic
 - May be quench hardened
 - Not as hard as Martensite

- Other
 - Manganese-Substituted Austenitic
 - Duplex Austenitic-Ferritic
 - Precipitation Hardened

Dissecting Forceps

- Micro-Dissecting (normally open)
- Cross Action (normally closed)

- Adson
- Cushing
- Jansen
- Alligator
Hemostats (Clamps)

- Kelly - sturdy
- Reynolds - sturdy
- Mosquito - delicate
- Mixter - delicate

Scissors

- Mayo - sturdy
- McPherson-Vannas
- Metzenbaum - delicate
Scissors

- Sharp
- Blunt
- Sharp-blunt
- Curved
- Curved (side)
- Angled

Retractors

- Rake
- Senn
- Weitlaner
- Davis
- Barraquer
Scalpels

#3
#4
#7

Round

Miniature

Needle Drivers

Webster

Olsen-Hegar
Driver/Scissor Combo
Needles

Cross-Sections
Top = inside edge
Btm = outside edge

Most common
Reverse cutting
Conventional cutting

Tough tissue
Diamond Point
Blunt
Taper

Ophthalmic / micro-surgery
Lancet
Inverted lancet
Spatula