Respiratory System

- Transport
 - Pump
- Distribution
 - Network
- Exchange
 - Surface area

Chest wall:
- Stiffens during quiet breathing
- Assists (expands) during heavy breathing

SRC: PNP, p.555
Elec 371 - Respiratory System

Transport

- Visceral Pleura
 (attached to lung)
- Parietal Pleura
 (attached to thoracic cage - ribs)
- Pleural Fluid

Inspiration

Expiration

Distribution

Upper Respiratory Tract
- Nose & Mouth
- Pharynx
 (throat)
- Larynx
 (voice box / Adam's Apple)
- Trachea

Lower Respiratory Tract
- Bronchi
- Bronchioles
- Alveoli

Lung: Distribution Exchange

SRC: PNP
Exchange

Measurements

- Composition
 - End-tidal CO_2

- Volume / Capacity (CC)
 - Spirometry
 - Nitrogen washout
 - Plethysmography

- Flow (l/min)
 - Tidal flow
 - Peak expiry

- Airway Resistance
 - Flow: easy
 - Pressure at AWO: easy
 - Pressure at pleura: difficult

$$R = \frac{P_{\text{pleura}} - P_{\text{AWO}}}{\text{flow}}$$
Definitions

• Absolute
 – TLC = total lung capacity
 – FRC = functional reserve capacity
 – RV = reserve volume

• Relative
 – IC = inspiratory capacity
 – ERV = expiratory reserve volume
 – VC = vital capacity
 – V_t = tidal volume
Spirometer

Mechanical integrator

Air

Water

Tidal Flow

Pneumotachograph

Small bore tubes

Differential pressure transducer

Processor

flow = \frac{\Delta P}{R}

SRC: www.anaesthesiak.com

Rotameters

Constant taper

Variable taper

Constant P (supports indicator)

Variable R (decreases w height)

SRC: www.anaesthesiak.com
Nitrogen Washout (Volume)

Air $\approx 78\%$ N_2, 22% O_2

Nitrogen Washout Test

$V_L = \text{lung volume}$

$M_L = 78\%$

$T_L = \text{lung temperature}$

$V_S = \text{spirometer reading}$

$M_S = \text{molar fraction of } N_2 \text{ in spirometer}$

$T_S = \text{spirometer temperature}$

$$\frac{V_L M_L}{T_L} = \frac{V_S M_S}{T_S} \quad V_L = \frac{T_L M_L V_S}{T_S M_L}$$

At start of test At end of test