Definitions

- Ion: Charged particle (molecule / atom)
 - Cation: + Ion
 - Anion: - Ion

- Oxidation: Loss of e⁻ by molecule / atom / ion
- Reduction: Gain of e⁻ by molecule / atom / ion
- Electrolyte: Solution containing ions

Polarizable Electrodes

- No chemical reaction / electron / ion exchange
- Charge accumulates on surface of electrode like a capacitor

- High pass filter
- Biosignals: (high or low frequency?)
 - EKG: 150 Hz
 - EEG: 50 Hz
 - EMG: 20 Hz
Percutaneous Electrodes

- Polarizable
- Hook minimizes motion artifact
- Pull hard to remove

Non-Polarizable Electrodes

- Metal + neutral electrolyte (containing the metal)
 - Reaction due to concentration imbalance
 - Depends on type of metal, ionic concentration & temperature
 - Diffusion current
 - Ions: metal to gel
 - Electrons: gel to metal
 - Like a charged capacitor

- Half-cell Potential (V_{hc})
 - Steady state charge at metal/electrolyte boundary
 - No net current
Table 5.1 Half-cell Potentials for Common Electrode Materials at 25 °C

<table>
<thead>
<tr>
<th>Metal and Reaction</th>
<th>Potential E°, V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al → Al⁺⁺ + 3e⁻</td>
<td>-1.706</td>
</tr>
<tr>
<td>Zn → Zn²⁺ + 2e⁻</td>
<td>-0.763</td>
</tr>
<tr>
<td>Cr → Cr³⁺ + 3e⁻</td>
<td>-0.744</td>
</tr>
<tr>
<td>Fe → Fe³⁺ + 2e⁻</td>
<td>-0.409</td>
</tr>
<tr>
<td>Cd → Cd²⁺ + 2e⁻</td>
<td>-0.401</td>
</tr>
<tr>
<td>Ni → Ni²⁺ + 2e⁻</td>
<td>-0.230</td>
</tr>
<tr>
<td>Pb → Pb²⁺ + 2e⁻</td>
<td>-0.126</td>
</tr>
<tr>
<td>H₂ → 2H⁺ + 2e⁻</td>
<td>0.000 by definition</td>
</tr>
<tr>
<td>Ag + Cl⁻ → AgCl + e⁻</td>
<td>+0.223</td>
</tr>
<tr>
<td>2Hg + 2Cl⁻ → Hg₂Cl₂ + 2e⁻</td>
<td>+0.216</td>
</tr>
<tr>
<td>Cu → Cu²⁺ + 2e⁻</td>
<td>+0.340</td>
</tr>
<tr>
<td>Cu → Cu⁺ + e⁻</td>
<td>+0.522</td>
</tr>
<tr>
<td>Ag → Ag⁺ + e⁻</td>
<td>+0.799</td>
</tr>
<tr>
<td>Au → Au³⁺ + 3e⁻</td>
<td>+1.420</td>
</tr>
<tr>
<td>Au → Au⁺ + e⁻</td>
<td>+1.680</td>
</tr>
</tbody>
</table>

Source: Data from Handbook of Chemistry and Physics, 55th edition, CRC Press, Cleveland, Ohio, 1974–1975, with permission.

Current Carriers

- **Body**
 - Na⁺ ions
 - K⁺ ions
 - Cl⁻ ions
 - Present but not involved in nerve stimulation
- **Electric Circuit**
 - Electrons e⁻
 - Holes h⁺
- **Electrode**
 - Electron / ion transducer

To monitor
Over-potential

- Current dependent voltages
 - Concentration (V_c)
 - Ion distribution near interface affected by I
 - Like a current dependent component of half-cell potential
 - Activation (V_a)
 - Atoms must overcome energy barrier before oxidation/reduction occurs
 - Energy barrier different for oxidation & reduction
 - Dependent on direction of current

\[
V_{op}(I) = V_c(I) + V_a(\text{sgn}(I))
\]

Equivalent Circuit

- $V_{hc} = \text{half-cell potential}$
- $V_{op} = \text{over-potential}$
- $CJ = \text{junction capacitance}$
- $RJ = \text{junction resistance}$
- $RE = \text{electrolyte resistance}$
Measured Electrode Impedance

Fig 5.6 (MI): Experimentally Determined Impedance
Electrode Frequency Response

\[
Z(s) = \left(R_E + R_j \right) \frac{s}{R_E R_j C_J} \frac{1}{1 + \frac{s}{R_j C_J}} \\
Z(s) \approx R_j \frac{1}{R_E C_J} \frac{1}{1 + \frac{s}{R_j C_J}} \quad R_j \gg R_E
\]

EMG Electrodes

- NonPolarizable
 - Sweat reacts with electrolyte (AgCl)
 - Motion artifact

- Polarizable
 - Percutaneous (crosses skin boundary)
 - Invasive
 - Reduced motion artifact
 - SS, Platinum or Gold plated