Review Definitions

- **Ion**: Charged particle (molecule / atom)
- **Cation**: + Ion
- **Anion**: - Ion
- **Valence**: # of e⁻ neutral atom may accept / lose
- **Oxidation**: Loss of e⁻ by molecule / atom / ion
- **Reduction**: Gain of e⁻ by molecule / atom / ion
- **Electrolyte**: Ionic solution

Current Carriers

- **Body**
 - Na⁺ ions
 - K⁺ ions
 - Cl⁻ ions
 - Present but not involved in nerve stimulation
- **Electric Circuit**
 - Electrons e⁻
 - Holes h⁺
- **Electrode**
 - Electron / ion transducer
Polarizable Electrodes

- No chemical reaction / electron / ion exchange
- Charge accumulates on surface of electrode like a capacitor
- High pass filter
- Biosignals: (high or low frequency?)
 - EKG: 150 Hz
 - EEG: 50 Hz
 - EMG: 20 Hz

Percutaneous Electrodes

- Polarizable
- Hook minimizes motion artifact
- Pull hard to remove
Non-Polarizable Electrodes

- **Metal + neutral electrolyte (containing the metal)**
 - Reaction due to concentration imbalance
 - Depends on type of metal, ionic concentration & temperature
 - Diffusion current
 - Ions: metal to gel
 - Electrons: gel to metal
 - Like a charged capacitor

- **Half-cell Potential (V_{hc})**
 - Steady state charge at metal/electrolyte boundary
 - No net current

Table 5.1 Half-cell Potentials for Common Electrode Materials at 25 °C

<table>
<thead>
<tr>
<th>Metal and Reaction</th>
<th>Potential E^0, V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al \rightarrow Al$^{3+}$ + 3e$^-$</td>
<td>-1.706</td>
</tr>
<tr>
<td>Zn \rightarrow Zn$^{2+}$ + 2e$^-$</td>
<td>-0.763</td>
</tr>
<tr>
<td>Cr \rightarrow Cr$^{3+}$ + 3e$^-$</td>
<td>-0.744</td>
</tr>
<tr>
<td>Fe \rightarrow Fe$^{2+}$ + 2e$^-$</td>
<td>-0.409</td>
</tr>
<tr>
<td>Cd \rightarrow Cd$^{2+}$ + 2e$^-$</td>
<td>-0.401</td>
</tr>
<tr>
<td>Ni \rightarrow Ni$^{2+}$ + 2e$^-$</td>
<td>-0.230</td>
</tr>
<tr>
<td>Pb \rightarrow Pb$^{2+}$ + 2e$^-$</td>
<td>-0.126</td>
</tr>
<tr>
<td>H$_2$ \rightarrow 2H$^+$ + 2e$^-$</td>
<td>0.000 by definition</td>
</tr>
<tr>
<td>Ag + Cl$^-$ \rightarrow AgCl + e$^-$</td>
<td>$+0.223$</td>
</tr>
<tr>
<td>2Hg + 2Cl$^-$ \rightarrow Hg2Cl$_2$ + 2e$^-$</td>
<td>$+0.268$</td>
</tr>
<tr>
<td>Cu \rightarrow Cu$^{2+}$ + 2e$^-$</td>
<td>$+0.340$</td>
</tr>
<tr>
<td>Cu \rightarrow Cu$^+$ + e$^-$</td>
<td>$+0.522$</td>
</tr>
<tr>
<td>Ag \rightarrow Ag$^+$ + e$^-$</td>
<td>$+0.799$</td>
</tr>
<tr>
<td>Au \rightarrow Au$^{3+}$ + 3e$^-$</td>
<td>$+1.420$</td>
</tr>
<tr>
<td>Au \rightarrow Au$^{+}$ + e$^-$</td>
<td>$+1.680$</td>
</tr>
</tbody>
</table>

Over-potential

- Current dependent voltages
 - Concentration (V_c)
 - Ion distribution near interface affected by I
 - Like a current dependent component of half-cell potential
 - Activation (V_a)
 - Atoms must overcome energy barrier before oxidation/reduction occurs
 - Energy barrier different for oxidation & reduction
 - Dependent on direction of current

$$V_{op}(I) = V_c(I) + V_a(sgn(I))$$

Equivalent Circuit

- V_{hc} = half-cell potential
- V_{op} = over-potential
- CJ = junction capacitance
- RJ = junction resistance
- RE = electrolyte resistance
Measured Electrode Impedance

Fig 5.6 (MI): Experimentally Determined Impedance

$\frac{1}{R_C} \approx 110Hz$

$\frac{1}{R_C} \approx 16kHz$

$R_j \approx 30,000 = 90dB$

$\approx 50dB$

≈ 2 decades

$\approx -20dB / dec$
Electrode Frequency Response

\[Z(s) = \frac{s}{(R_E + R_J)^2/R_E R_J C_J} \]

\[Z(s) \approx R_J \frac{s}{R_E R_J C_J} \quad R_J >> R_E \]

Electrode Connections
EMG Electrodes

- NonPolarizeable
 - Sweat reacts with electrolyte (AgCl)
 - Motion artifact

- Polarizeable
 - Percutaneous (crosses skin boundary)
 - Invasive
 - Reduced motion artifact
 - SS, Platinum or Gold plated