Self-Hosted Placement for Massively Parallel Processor Arrays (MPPAs)

Graeme Smecher, Steve Wilton, Guy Lemieux

Thursday, December 10, 2009
FPT 2009
Landscape

• Massively Parallel Processor Arrays
 – 2D array of processors
 • Ambric: 336, PicoChip: 273, AsAP: 167, Tilera: 100
 – Processor-to-processor communication

• Placement (locality) matters
 – Tools/algorithms immature
Opportunity

• MPPAs track Moore’s Law
 – Array size grows
 • E.g. Ambric:336, Fermi:512

• Opportunity for FPGA-like CAD?
 – Compiler-esque speed needed
 – Self-hosted parallel placement
 • M x N array of CPUs computes placement for M x N programs
 • Inherently scalable
Overview

• Architecture
• Placement Problem
• Self-Hosted Placement Algorithm
• Experimental Results
• Conclusions
MPPA Architecture

- $32 \times 32 = 1024$ PEs
- PE = RISC + Router
- RISC core
 - In-order pipeline
 - More powerful PE than prev talk
- Router
 - 1-cycle per hop
MPPA Architecture (cont’d)

- Simple RISC core
 - More capable than RVEArch
- Small local RAM
Overview

• Architecture
• **Placement Problem**
• Self-Hosted Placement Algorithm
• Experimental Results
• Conclusions
Placement Problem

• Given: netlist graph
 – Set of “cluster” programs
 – One per PE
 – Communication paths

• Find: good 2D placement
 – Use simulated annealing
 – E.g., minimum total Manhattan wirelength
Overview

• Architecture
• Placement Problem
• **Self-Hosted Placement Algorithm**
• Experimental Results
• Conclusions
Self-Hosted Placement

- Idea from Wrighton and DeHon, FPGA03
 - Use FPGA to place itself
 - Imbalanced: tiny problem size needs **HUGE** FPGA
 - N-FPGAs needed to place 1-FPGA design
Self-Hosted Placement

• Use MPPA to place itself
 – PE powerful enough to place itself
 – Removes imbalance
 – 2 x 3 PEs to place 6 “clusters” into 2 x 3 array
Regular Simulated Annealing

1. **initial**: random placement
2. **for** T in \{temperatures\}
 1. **for** n in 1..N clusters
 1. Randomly select 2 blocks
 2. Compute swap cost
 3. Accept swap if
 i) cost decreases, or
 ii) random trial succeeds
Modified Simulated Annealing

1. initial: random placement
2. for T in $\{\text{temperatures}\}$
 1. for n in $1..N$ clusters
 1. Consider all pairs in neighbourhood of n
 2. Compute swap cost
 3. Accept swap if
 i) cost decreases, or
 ii) random trial succeeds
Self-Hosted Simulated Annealing

1. initial: random placement
2. for T in \{temperatures\}
 1. for n in 1..N clusters
 1. Update position chain
 2. Consider all pairs in neighbourhood of n
 3. Compute swap cost
 4. Accept swap if
 i) cost decreases, or
 ii) random trial succeeds
Algorithm Data Structures

- Place-to-block maps
- Net-to-block maps

PEs <x,y>

bpm

pbm

Nets

bnm

nbm

Blocks

(programs)

DYNAMIC

STATIC
Algorithm Data Structures

pbm

Full map in each PE Partial map in each PE
Swap Transaction

• PEs pair up
 – Deterministic order, hardcoded in algorithm

• Each PE computes cost for own BlockID
 – Current placement cost
 – After cost if BlockID was swapped

• PE 1 sends cost of swap to PE 2
 – PE 2 adds costs, determines if swap accepted
 – PE 2 sends decision back to PE 1
 – PE 1 and PE2 exchange data structures if swap
Data Structure Updates

Dynamic structures
Local \(<x,y> \): update on swap
Other \(<x,y> \): update chain

Static structures
Exchanged with swap
Data Communication

Swap Transaction

PEs exchange BlockIDs

PEs exchange nets for their BlockIDs

PEs exchange BlockIDs for their nets

(already updated)
Overview

• Architecture
• Placement Problem
• Self-Hosted Placement Algorithm
• Experimental Results
• Conclusions
Methodology

• Three versions of Simulated Annealing (SA)
 – Slow sequential SA
 • Baseline, generates “ideal” placement
 • Very slow schedule (200k swaps per T drop)
 • Impractical, but nearly optimal
 – Fast Sequential SA
 • Vary parameters across practical range
 – Fast Self-Hosted SA
Benchmark “Programs”

• Behavioral Verilog dataflow circuits
 – Courtesy Deming Chen, UIUC
 – Compiled using RVETool into parallel programs

• Hand-coded Motion Estimation kernel
 – Handcrafted in RVEArch
 – Not exactly a circuit
Benchmark Characteristics

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>Blocks</th>
<th>Nets</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>me</td>
<td>1024</td>
<td>998</td>
<td>1,242</td>
</tr>
<tr>
<td>dir</td>
<td>1024</td>
<td>760</td>
<td>1,785</td>
</tr>
<tr>
<td>chem</td>
<td>1024</td>
<td>749</td>
<td>1,250</td>
</tr>
<tr>
<td>mcm</td>
<td>256</td>
<td>244</td>
<td>404</td>
</tr>
<tr>
<td>honda</td>
<td>256</td>
<td>240</td>
<td>379</td>
</tr>
<tr>
<td>pr</td>
<td>256</td>
<td>128</td>
<td>181</td>
</tr>
</tbody>
</table>

Up to 32 x 32 array size
Result Comparisons

• Investigate options
 – Best neighbourhood size: 4 8 12
 – Update chain frequency
 – Stopping temperature
4-Neighbour Swaps

Swaps per Temperature Step (1000s; Traditional Placer)

Normalized Placement Cost

Swap Rounds per Temperature Step (1000s; Distributed Placer)

dir
me
pr
mcm
honda
chem

(a) 5-PE
8-Neighbour Swaps

Swaps per Temperature Step (1000s; Traditional Placer)

Normalized Placement Cost

Swap Rounds per Temperature Step (1000s; Distributed Placer)

- dir
- me
- pr
- mcm
- honda
- chem
12-Neighbour Swaps
Update-chain Frequency

![Graph showing normalized placement cost over updates]

- me
- pr
- mcm
- honda
- chem
- dir

Normalized Placement Cost

Updates
Stopping Temperature
Limitations and Future Work

• These results were simulated on a PC
 – Need to target real MPPA
 – Performance in <# swaps> vs <amount of communication> vs <runtime>

• Need to model limited RAM per PE
 – We assume complete netlist, placement state can be divided among all PEs
 – Incomplete state if memory is limited?
 • e.g., discard some nets?
Conclusions

• Self-Hosted Simulated Annealing
 – High-quality placements (within 5%)
 – Excellent parallelism and speed
 • Only $1/256^{\text{th}}$ number of swaps needed
 – Runs on target architecture itself
 • Eat you own dog food
 • Computationally scalable
 • Memory footprint may not scale to uber-large arrays
Conclusions

• Self-Hosted Simulated Annealing
 – High-quality placements (within 5%)
 – Excellent parallelism and speed
 • Only 1/256th number of swaps needed
 – Runs on target architecture itself
 • Eat you own dog food
 • Computationally scalable
 • Memory footprint may not scale to uber-large arrays

• Thank you!
EOF