EECE 571W

Week 2:
Social Networks and Group Work

History: Grudin

• “Office Automation”
 – Failed experiment
 – Never understood requirements
 – Effect of technology on groups and vice versa was ignored
 – What Engelbart calls “co-evolution”

CSCW & Groupware

• CSCW (post 1984)
 – Learn from other disciplines:
 • Economics
 • Social psychology
 • Anthropology
 • Organizational behaviour
 • Education
 – CSCW = field of research
 – Groupware = technology
Groupware Typology

<table>
<thead>
<tr>
<th>Place</th>
<th>Time</th>
<th>Different & predictable</th>
<th>Different & unpredictable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Same</td>
<td>Same</td>
<td>Meeting facilitation</td>
<td>Work shifts</td>
</tr>
<tr>
<td>Different & predictable</td>
<td>Different & predictable</td>
<td>Video-conferencing</td>
<td>Email</td>
</tr>
<tr>
<td>Different & unpredictable</td>
<td>Different & unpredictable</td>
<td>Interactive multicast</td>
<td>Computer bboards</td>
</tr>
</tbody>
</table>

Grudin’s Eight Challenges

1. Disparity in work & benefit
2. Critical mass and Prisoner’s dilemma
3. Disruption of social processes
4. Exception handling
5. Unobtrusive accessibility
6. Difficulty of evaluation
7. Failure of intuition
8. The adoption process

1. Disparity in Work & Benefit

- Systems are designed to benefit one group of users and require effort from a different group
 - E.g. management vs. office workers

- Unless those required to do the work to make a system work get direct benefit from so doing, the system will fail.
2. Critical mass and Prisoner’s Dilemma problems

- Systems designed to be useful only if “everyone” uses them
 - Little incentive for early adopters
 - One or two defectors can derail effort

- Design systems so that both individuals and groups benefit

3. Disruption of Social Processes

- Groupware systems can violate taboos, disrupt chains of command, or demotivate critical users
 - Social structures vary greatly from group to group
- Need to understand deployment environments and develop systems with very flexible configuration and patterns of use

4. Exception Handling

- Most actual work is in handling exceptional situations but groupware systems tend to make handling these difficult or impossible

- Avoid over-automation of processes in favour of flexibility and creativity. Understand how work is actually done.
5. Unobtrusive Accessibility

• Often group-oriented tasks are used infrequently, so difficult for users to remember how to access and exploit them
• Need to be based on transparent and “explorable” interfaces where groupware features don’t interfere with individual work

6. Difficulty of Evaluation

• Hard to learn from experience because benefits of groupware are hard to quantify and decompose
• Need better, more qualitative, ways of understanding impact and effects of groupware systems

7. Failure of Intuition

• Typical developers unable to predict effects of multi-user capabilities. Intuitions built around single-user applications
• Need to understand sociology and psychology of group work in design process and have better understanding of relationship between group and individual work
8. The Adoption Process

- Means of introducing new technologies is critical to their success but often ignored
 - Especially critical for groupware because of Challenge #2: Critical Mass
- Take “tool” and “organizational” inertia as given factors and develop deployment strategies that respect them

Social Network

Group of people with common interest who regularly communicate and share information

Share:
- Common knowledge
- Communication paths
- History and plans
Vary by above factors +
- Physical distribution
- Scale

Community Types

Communities of Place
- Common location
Communities of Purpose
- Common goals
Communities of Interest
- Common topic of attention
Communities of Practice
- Common skills and problems

Cultural communities
- Common cultural and social background
Communities of Status
- Common standing in larger communities
Communities of Method
- Common methodology
Learning communities
- Common learning objectives
Community of Place

Shared:
- Location
- Political structures
- Needs (services etc.)

• Traditional definition of community
• Sociology and anthropology

Community of Purpose

Shared:
- Goals

• Exist at many scales (e.g. organizations)
• Often called “teams”
• Focus of groupware technology
• Organizational behaviour & MIS

Cultural Community

Share:
- History
- Social structures and relationships

• Religion, language and ethnicity
• Sense of common destiny
• Tend to be exclusionary and xenophobic
Community of Interest

Share:
– Topic of interest

• Hobbyists, clubs etc.
• Membership by choice
• Typically passionate and motivated

Community of Practice

Shared:
– Problem domain
– Set of skills

• E.g. Professional organization, standards body, or experts within organizations
• Etienne Wenger coined term
• Focus on sharing skills and experiences

Community of Status

Share:
– Standing within other communities

• Unions, student and faculty associations
• May exist within or across enclosing communities
• Membership is very fluid
Community of Method

- Share:
 - Means of accomplishing tasks
- E.g. Functional vs. Structural Anthropologists, qualitative vs. quantitative researchers
- Kind of Community of Practice
- Often divisive force within other communities

Learning Community

Share:
- Topic of interest
- Learning objectives

- E.g. class, university department, ...
- Kind of comm. of purpose, interest and status
- Tension between collective and competitive goals

Cooperation vs. Collaboration

- Relationships between people with common interests and goals

Cooperation:
- Active non-interference with others goals

Collaboration:
- Common work toward common goals
Community vs. Technology

- If a community is supported by computer-mediated communication then what must the CMC look like?
- How do the needs of the different kinds of communities match with particular CMC technologies?
- What is the effect of CMC on the communities?

CSSNs

Computer-Supported Social Networks
- Computer technology to support social networks
- “Wellman, Salaff etc. (1996)”
- Only three aspects
 - Virtual community
 - CSCW
 - Telework

Kinds of Support Provided

- Exchange of information
 - Sharing common knowledge
 - Planning and decision making
 - Events and schedules
- Social and personal
 - Sense of community membership
 - Emotional support
Relationships

• Specialized ties
 – Limited, special purpose relationships
• Strong ties
 – Long-term friendships and common destiny
• Weak ties
 – Identity and stability less important
• Stressful ties
 – Defined by potential or actual conflict

CSCW Observations

“Ackerman (2000)”
 • Incentives are critical
 • Social activity is fluid and nuanced
 • Goals vary within communities
 • Presence is important
 • Visibility enhances communication
 • Social norms are actively negotiated
 • Co-evolution is a fact

“Grudin (1994)”
 • Work vs. benefit
 • Disruption of social processes
 • Critical mass
 • Exception handling
 • Unobtrusive accessibility
 • Difficulty of evaluation
 • Failure of intuition
 • The adoption process

Social/Technological Gap:
P3P Example

• Users want to control sharing with a combination of recipient and data to be shared
 – “Wicked Problem” – ill-defined and intractable
 – User interface problems come from fluidity of relationships and users’ lack of explicitness of the implications of those relationships
Approaches

1. Treat CSCW as a “science of the artificial”
 • Adopt co-evolution strategy
2. Adopt palliative approaches
 • Ideological, Political and Educational
3. Find tractable approximations
 • Simplify “wicked” problems and manage complexity
4. Agree on guiding questions

Guiding questions

• When can computation system ignore need for nuance and context?
• How and when can computer systems make up for loss of nuance and context?
• Can we systematize understanding of benefits and losses of the approximate solutions?
• What types of future research will narrow gaps between technical possibility and peoples expectations?

Co-Evolution

• Technology affects community
• Community should affect technology
• Both must be treated as dynamic and responsive
• Change in both should be studied and managed