A Real-Time Algorithm for Timeslot Assignment in Multirate Return Channels of Interactive Satellite Multimedia Networks

Ki-Dong Lee, Associate Member, IEEE, and Kun-Nyeong Chang, Member, IEEE

Abstract—Since the digital video broadcast-return channel via satellite (DVB-RCS) standard was released in 2000, developing an interactive satellite multimedia (ISM) network has become a hot issue. In order to provide high-speed multimedia services using a DVB-RCS system, it is important to efficiently and dynamically assign the timeslots to a number of terminals according to their various demands. Also, it is imperative to improve the degradation of link quality due to rain-fade attenuation in Ka-band satellite communications. As a result, multirate superframe structures should be implemented for a relatively low data rate at the cost of stable connection to terminals in rain-fade regions and a relatively high data rate to terminals in clear-sky regions. Timeslot scheduling in this environment is studied in this paper. We mathematically formulate the timeslot assignment problem as a nonlinear integer programming problem and develop an efficient real-time solution algorithm. Extensive simulation results show that our algorithm successfully finds a feasible solution with optimality gap less than 0.05% within about 5 ms at Pentium III PC. We believe that our algorithm can be utilized as a guideline in developing real-time timeslot assignment algorithms for ISM networks.

Index Terms—Digital video broadcast-return channel via satellite (DVB-RCS), interactive, multimedia, rain-fade attenuation, satellite, timeslot scheduling.

I. INTRODUCTION

An interactive satellite multimedia (ISM) network, such as digital video broadcast-return channel via satellite (DVB-RCS) network, will provide high-speed multimedia service, including Internet service to subscribers distributed over a very wide area. A DVB-RCS network is a geostationary earth orbit (GEO) satellite interactive network, which consists of a hub, a GEO satellite, and a number of RCS terminals (RCSTs), providing multimedia services [1]–[3]. Implementation of a DVB-RCS system has become one of the interesting issues. Worldwide companies and industries are developing broadband ISM systems, and its commercial availability and technical feasibility have been announced recently [3]–[5].

To accommodate increasing network access demand at the lowest possible cost, it is imperative to maximize the utilization of radio resources. In the return link of DVB-RCS networks (RCST to hub via satellite), since there is neither a broadcasting effect as in the forward link nor high reuse efficiency as in the present and emerging cellular systems, it is an important focus of investigation to achieve high capacity with limited available radio resources [6].

In optimizing a radio resource allocation problem, one of imperative requirements to consider is that the system should provide a stable service using flexible multirate transmission according to radio link conditions. In GEO satellite communications, rain-fade attenuation may give rise to a critical degradation of radio link quality [7], [8]. In cases of rain-fade attenuation, the link quality is improved by using more stable coding rates and symbol rates. Using different coding rates and symbol rates for subscribers in rain-fade regions and those in ordinary (clear-sky) regions requires two different channels: rain-fade channels (channels for rain-fade attenuation) and ordinary channels. Since rain-fade subscribers can hardly communicate through ordinary channels, they should use rain-fade channels only. Since, however, ordinary subscribers may communicate through rain-fade channels, they may use both channels.

As a result, it is necessary to solve a resource allocation problem with heterogeneous resources and heterogeneous subscribers in order to achieve a high utilization of radio resources, while providing a stable link quality. We formulate this resource allocation problem as a nonlinear integer programming problem [9]–[13], and develop an efficient real-time heuristic solution algorithm. Performance analysis and extensive simulation results show that our algorithm has excellent computational efficiency and successfully finds timeslot schedules with optimality gap within 0.05%.

Since the DVB-RCS standard [1] was released in 2000, several resource allocation algorithms have been discussed [14], [15]. In [14], homogeneous frame structures are considered in timeslot assignment problems for DVB-RCS systems. However, heterogeneous frame structures and the resulting multirate channels are not considered. An overview of capacity scheduling in a multichannel satellite environment is provided [15]. However, that paper only discusses some strategies and scheduling-level algorithms are not developed. We believe that this paper is a milestone for the newly proposed DVB-RCS system by the European Telecommunications Standards Institute (ETSI) and our algorithm can be utilized as a guideline for optimal timeslot scheduling in practical environments with heterogeneous frame structures and satellite terminals.

Manuscript received December 15, 2002; revised July 1, 2003 and November 10, 2003. This work was supported in part by the Ministry of Information and Communication (MIC) of Korea.

K.-D. Lee is with the Digital Broadcasting Research Division, Electronics and Telecommunications Research Institute (ETRI), Daejeon 305-350, Korea (e-mail: kdlee@etri.re.kr).

K.-N. Chang is with the Department of Business Administration, Yonsei University, Gangwon-Do 220-710, Korea (e-mail: knchang@dragon.yonsei.ac.kr).

Digital Object Identifier 10.1109/JSAC.2004.823433
The rest of this paper is organized as follows. In Section II, we present our return link model with multirate frame structures. We mathematically formulate the timeslot assignment problem in Section III and propose solution algorithms in Section IV. We analyze the performance of the proposed algorithm in Section V. Finally, we conclude our work in Section VI.

II. RETURN LINK MODEL

We consider an ISM network with one earth station (hub), a GEO satellite, and a number of RCSTs as shown in Fig. 1. The ETSI’s DVB-RCS standard [1] calls for a return link (RCST to hub via satellite) using a multifrequency time-division multiple-access (MF-TDMA) scheme. RCSTs are divided into clear-sky RCSTs (RCSTs in clear-sky region) and rain-fade RCSTs (RCSTs in rain-fade region).1 In DVB-RCS systems, the resource allocation policy is based on so-called bandwidth-on-demand (BoD). In Fig. 1, RCSTs in need of capacity send request (CR) messages to a scheduler which is a unit of the hub. Upon receiving the CR messages, the scheduler generates a terminal burst time plan (TBTP) table and sends it to RCSTs. Upon receiving the TBTP table, each RCST reads the TBTP table to know what timeslots are assigned. This procedure is executed every superframe.

Fig. 2 shows an example of a superframe pattern in our MF-TDMA model. We consider an MF-TDMA model, where a superframe, which is defined as a specific time-frequency block \(T_{sf} \times W_{sf} \) (1 µs -MHz) in time-frequency domain, includes a group of frames. The time-frequency block \(T_{sf} \times W_{sf} \) is divided into four second-level time-frequency blocks \(T_{sf} \times W_{f} \)'s. This second-level block \(T_{sf} \times W_{f} \) is used to generate clear-sky frames (clear-sky timeslots) or rain-fade frames (rain-fade timeslots). If the second-level block \(T_{sf} \times W_{f} \) is used to generate clear-sky frames,2 it is divided into \(n_{sf} \) clear-sky frames, where a clear-sky frame is defined as a specific time-frequency block \(T_{f} \times W_{f} \). A clear-sky frame consists of several carrier blocks \(T_{f} \times W_{f} \) (1) in Fig. 2], and each carrier block consists of one common signaling channel (CSC) timeslot, one acquisition (ACQ) timeslot, one synchronization (SYNC) timeslots, and \(n_{trf} \) traffic (TRF) timeslots. If the second-level block \(T_{sf} \times W_{f} \) is used to generate rain-fade frames, it is divided into four \(n_{sf} \) rain-fade frames, where a rain-fade frame is defined as a specific time-frequency block \(T_{f} \times W_{f} \). A rain-fade frame consists of several carrier blocks \(T_{f} \times W_{f} \) (4 in Fig. 2], and each carrier block consists of one CSC timeslot, one ACQ timeslot, one SYNC timeslots, and \(n_{trf} \) TRF timeslots. Clear-sky RCST can use clear-sky timeslots or rain-fade timeslots, and rain-fade RCST should use only rain-fade timeslots.

III. TIMESLOT ASSIGNMENT PROBLEM

A. Mathematical Formulation

In this section, we mathematically formulate the optimal timeslot assignment problem (TAP) with two types of RCSTs and multiple data and delay classes, under the assumption that the set of clear-sky timeslots and the set of rain-fade timeslots are given. The objective of the problem TAP is to minimize the overall weighted penalty defined by

\[
\sum_{j \in R} \sum_{k \in C_1} \sum_{l \in C_2} w_{ij} \cdot \max \left(0, d_{ij} - \sum_{i \in S} x_{ij} \right)
\]

where the decision variable \(x_{ij} \) is a binary integer variable indicating timeslot assignment, where \(x_{ij} = 1 \) represents that TRF timeslot \(i \) is assigned to service class \((k,l)\) of RCST \(j \) and...
The value x_{ij}^d represents the number of timeslots allocated to service class (k,l) of RCST j and, thus, the value $(d_j^d - \sum_{i \in S} x_{ij}^d)$ represents the number of timeslots which is not satisfied by the timeslot assignment. (See Table I for system parameters on radio resource allocation.)

In practical services, subscribers (RCSTs) may be classified into several classes according to their capacity requirements and their contribution to the revenue, and their traffic may be classified into several classes according to the respective characteristics such as quality-of-service (QoS) requirements. These different contribution/penalty factors should be incorporated into the objective function, which are widely used in economic modeling for resource allocation [12]. In this paper, the weighting value w_j^{kl} used in the objective reflects the QoS of each RCST and service class case. This value may be determined by various factors such as the grade of RCSTs (e.g., 2-, 1-, and 0.5-Mb/s subscribers) and the average waiting time. In this paper, we give priority to rain-fade RCSTs over clear-sky RCSTs for rain-fade timeslots and, thus, the weighting value of rain-fade RCST is assumed to be much larger than that of clear-sky RCST. We also give priority to data class over delay class and, thus, the weighting value of a higher data class is assumed to be larger than that of a lower data class regardless of their delay classes.

Now, the problem TAP is mathematically formulated as follows:

\[
\text{TAP} \quad \min \sum_{j \in R} \sum_{k \in C_1} \sum_{l \in C_2} w_j^{kl} \cdot \left(d_j^d - \sum_{i \in S} x_{ij}^d \right) \quad (1)
\]

where the decision variable z_j is a binary integer variable, where $z_j = 1$ represents that rain-fade timeslots are allocated to RCST j and $z_j = 0$ represents that clear-sky timeslots are allocated to RCST j.

Constraint (3) means that the number of timeslots allocated to service class (k,l) of RCST j should not be greater than the requested amount d_j^d. Constraint (3) means that each timeslot should not be assigned to more than one RCST and service class case. Constraint (4) means that the number of timeslots allocated to RCST j should not be greater than the maximum capacity Q_j. Constraint (5) means that a RCST should not use clear-sky timeslots and rain-fade timeslots together. Constraints (6) and (7) mean that timeslots assigned to a RCST should not use same time domain. Constraint (8) means that the number of timeslots allocated to service class (k,l) of RCST j should satisfy the minimal requirement $\alpha_j^d d_j^d$. Introducing a threshold sequence $\{\alpha_j^d\}$, we can provide a guaranteed lower bound of the QoS of the respective RCSTs. The threshold value of $\alpha_j^d = 0.5$ means that at least 50% of the demand d_j^d must be assigned to class (k,l) of RCST j. This value will be specified according to service providers’ policies.

An RCST should be assigned exactly one SYNC timeslot every superframe to maintain fine SYNC [1]. A SYNC timeslot contains the satellite access control (SAC) field composed of signaling information added by the RCST for the purpose of requesting capacity on the session, or other additional medium access control (MAC) information. SYNC timeslots may be failed because of rain-fade attenuation and so on. In cases that a SYNC timeslot with CR message is failed, then the RCST cannot be assigned TRF timeslots at its request. Since the timeslot assignment in DVB-RCS is based on BoD, SYNC timeslot failure is critical to QoS. In order to reduce the
QoS degradation caused by SYNC timeslot failure, we assign the minimal number of TRF timeslots so that CR messages may be transmitted more stably via TRF timeslots. In our mathematical formulation for timeslot assignment, thus, we introduce the minimal requirement \(m_j \) for the purpose of improving signaling message failure. Constraint (9) means that the number of timeslots assigned to RCST \(j \) is greater than or equal to the minimal requirement \(m_j \). Constraint (10) means that a rain-fade RCST should use only rain-fade timeslots.

The problem TAP is a nonlinear binary integer programming problem which is NP-complete. To deal with the problem TAP more conveniently, we employ a problem reduction technique [10], where TAP is reduced to the problem of determining the number of timeslots allocated to service class \((k, l)\) of RCST \(j \) as follows:

\[
\text{(RTAP)} \\
\text{Min} \sum_{j \in R} \sum_{k \in C_1} \sum_{l \in C_2} w_{jkl} \cdot (d_{jkl} - y_{jkl}^f) \\
\text{s.t.} \quad y_{jkl}^f \leq d_{jkl}, \quad \forall j \in R, \quad k \in C_1, \quad l \in C_2 \\
\sum_{k \in C_1} \sum_{l \in C_2} y_{jkl}^f \leq Q_j, \quad \forall j \in R \\
\sum_{j \in R} (1 - z_j) \sum_{k \in C_1} \sum_{l \in C_2} y_{jkl}^b \leq \bar{N}_c \\
\sum_{j \in R} z_j \sum_{k \in C_1} \sum_{l \in C_2} y_{jkl}^b \leq \bar{N}_r \\
y_{jkl}^f \geq \alpha_j d_{jkl}^b, \quad \forall j \in R, \quad k \in C_1, \quad l \in C_2 \\
\sum_{k \in C_1} \sum_{l \in C_2} y_{jkl}^b \geq m_j, \quad \forall j \in R \\
z_j = 1, \quad \forall j \in R_r \\
z_j = 0 \text{ or } 1, \quad \forall j \in R_c \\
y_{jkl}^b: \text{nonnegative integer}
\]

where the decision variable \(y_{jkl}^f \) denotes the number of timeslots allocated to service class \((k, l)\) of RCST \(j \). The problem RTAP is equivalent to the problem TAP because we can easily obtain timeslot scheduling satisfying constraints of the problem TAP when the number of timeslots allocated to RCSTs are determined.

B. Capacity Request Category and Mapping

The ETSI’s DVB-RCS standard [11] recommended five categories of CR: continuous rate assignment (CRA), rate-based dynamic capacity (RBDC), volume base dynamic capacity (VBDC), absolute volume-based dynamic capacity (AVBDC), and free capacity assignment (FCA). RCSTs use the CRA type if they need constant rates. If a specific number of timeslots is assigned to an RCST according to CRA, then this amount is continuously assigned to that RCST every superframe until that RCST sends the assignment release message. The RBDC type is used for the same purpose of the CRA type but the continuous assignment is automatically expired if the time (in superframes) is out. The VBDC and AVBDC types are used for volume capacity request, where VBDC is for cumulative request and AVBDC is for the initial request or initialization of the previous requests. In FCA, free capacity may be assigned as a bonus opportunity of transmission of any traffic. Especially, FCA should not be mapped to any traffic category, since availability is highly variable [2]. Capacity assigned in this category is intended as bonus capacity, which can be used to reduce delays on any traffic which can tolerate delay jitter.

When an RCST sends a CR message, it uses the 2 byte SAC request subfield which consists of 1-bit scaling factor, 3-bit capacity request type, 4-bit channel ID, and 8-bit CR value [1]. For example, suppose that capacity demand vector for service class \((k, l)\) of RCST \(j \) is \(d_{jkl}^b = (d_{jkl1}, \ldots, d_{jkl|C_2|}) = (0, 0, 0) \) at superframe \(n \), and suppose that this RCST sends its SAC request subfield with scaling factor 1 (denoting factor 16), capacity request type 000 (denoting VBDC type), and CR value 10. Then, at next superframe, we have the equation at the bottom of the page, where payload size is 53 (ATM cell) or 188 (MPEG2-TS packet) bytes according to encapsulation mode defined at log-on, and capacity per TRF timeslot is the amount of information (in bytes) per TRF timeslot [1]. According to the DVB-RCS guideline [2], free TRF timeslots can be additionally assigned to log-on RCSTs to improve delays. This strategy is most commonly implemented by assigning timeslots on a round-robin basis to a group of RCSTs [16]. The respective FCA amounts should be determined considering fairness and their average delay measurements. Even though FCA is advantageous to improve the end-to-end delay of one satellite hop (up and down), it may be impractical to assign sufficient free timeslots to all RCSTs in a system with large subscriber communities.

IV. Solution Procedure

In this section, we suggest a three-phase solution procedure for timeslot assignment. The first phase determines the set of clear-sky TRF timeslots \(S_c \), and the set of rain-fade TRF timeslots \(S_r \). The sets \(S_c \) and \(S_r \) may be updated according to the sets \(R_c \) and \(R_r \), and the demand matrix \(\{d_{jkl}^b\} \). The second and third phases solve the problem TAP with \(S_c \) and \(S_r \) obtained in Phase 1. The second phase determines the number of timeslots allocated to each RCST and service class case. First, the number of timeslots allocated to rain-fade RCSTs

\[
d_{jkl}^b = \begin{cases}
\frac{(\text{payload size}) \times \text{scaling factor} \times \text{CR value}}{\text{capacity per TRF timeslot}}, & l = 1 \\
\frac{d_{jkl1} - d_{jkl-1}}{d_{jkl1} - d_{jkl-1}}, & l = 2, \ldots, |C_2| - 1 \\
\sum_{n=1}^{l} \left(\frac{d_{jkn}}{d_{jkn} - d_{jkn-1}} \right), & l = |C_2|
\end{cases}
\]
are determined, and then the number of timeslots allocated to clear-sky RCSTs are determined. The third phase determines the schedule of timeslots allocated to each RCST.

A. Phase 1: Timeslot Set Determination

In this phase, we determine the sets S_c and S_r. These sets are determined by the number of second-level time-frequency blocks $T_{sf} \times W_f^j$'s used to generate clear-sky frames, B_c, and the number of second-level time-frequency blocks $T_{sf} \times W_f^j$'s used to generate rain-fade frames, B_r. Suppose that an extreme case that all frames are used for clear-sky channels when all RCSTs are rain-faded. In this case, no RCST can be served and no RCST can be logged on although there are available channels until this rain-fade condition disappears. To avoid this abnormal case in operating a system, it is preferred to have at least one rain-fade channel. Then, we obtain that $(B_c, B_r) \in \{(W_{sf}/W_f) - x, x): x = 1, \ldots, (W_{sf}/W_f)\}$.

The optimal value pair (B^*_c, B^*_r) is determined using three criteria: the total number of TRF timeslots, minimal requirement, and fairness between clear-sky RCSTs and rain-fade RCSTs. Our objective is to find the optimal value pair (B^*_c, B^*_r), which maximizes the total number of TRF timeslots satisfying the minimal requirement condition and the fairness condition.

The minimal requirement condition is as follows:

$$\sum_{j \in R^*_c} m^*_j \leq N_c \left(= N_c \cdot B_c \cdot \frac{W^r}{W_f} \right)$$

$$\sum_{j \in R_r} m^*_j + \sum_{j \in R_r - R^*_c} m^*_j \leq N_r \left(= N_r \cdot B_r \cdot \frac{W^r}{W_f} \right)$$

where $m^*_j = \max \{ m^*_j, \sum_{k \in C^1} \sum_{c \in C^2} d_{k,c}^l d_{j,c}^l \}$, and the set R^*_c is the set of RCST j's such that $\nu^*_j = 1$ in the maximal solution of the following problem KP:

$$\max \{\sum_{j \in R_c} m^*_j \nu^*_j : \sum_{j \in R_c} m^*_j \nu^*_j \leq N_c, \nu^*_j = 0 \text{ or } 1, \forall j \in R^*_c\}.$$ This knapsack problem KP is NP-complete and thus, it is very difficult to obtain an optimal solution. An efficient heuristic algorithm is obtained by the following heuristic procedure KPA (Fig. 3).

The fairness condition is that the ratio of average service quality of rain-fade RCSTs to that of clear-sky RCSTs is greater than or equal to a given threshold value FR_0. We label this ratio as assigned amount to demand ratio, ADR, defined as

$$ADR \equiv \min \left\{ \frac{\text{average} \left\{ \frac{\text{no. of assigned timeslots}}{\text{no. of requested timeslots}} \right\}, 1} \right\}.$$ Then, ADR of rain-fade RCSTs and ADR of clear-sky RCSTs, respectively, are given by

$$ADR_r = \frac{\sum_{j \in R_r} \sum_{k \in C^1} \sum_{c \in C^2} \nu^*_j d_{k,c}^l \cdot I(d_{k,c}^l \neq 0)}{\sum_{j \in R_r} \sum_{k \in C^1} \sum_{c \in C^2} \nu^*_j d_{k,c}^l \cdot I(d_{k,c}^l = 0)}$$

$$ADR_c = \frac{\sum_{j \in R_c} \sum_{k \in C^1} \sum_{c \in C^2} \nu^*_j d_{k,c}^l \cdot I(d_{k,c}^l \neq 0)}{\sum_{j \in R_c} \sum_{k \in C^1} \sum_{c \in C^2} \nu^*_j d_{k,c}^l \cdot I(d_{k,c}^l = 0)}$$

where $I(\cdot)$ is an indicating variable denoting 1 if the expression is true and 0, otherwise. With ADR, fairness ratio FR between rain-fade RCSTs and clear-sky RCSTs is defined as

$$FR = \frac{ADR_r}{ADR_c}.$$ This fairness ratio, FR, is used to determine (B^*_c, B^*_r). However, it is necessary to find an optimal solution $\{y^*_j\}$ for computing ADR_r and ADR_c. In order to improve real-time solution efficiency, we revise the original ADR as

$$ADR_r' = \frac{Y^*_r}{D_r},$$

$$ADR_c' = \frac{Y^*_c}{D_c}$$

where $D_r = \sum_{j \in R_r} \sum_{k \in C^1} \sum_{c \in C^2} d_{k,c}^l$, and $D_c = \sum_{j \in R_c} \sum_{k \in C^1} \sum_{c \in C^2} d_{k,c}^l$ denote the total numbers of timeslots requested by rain-fade RCSTs and clear-sky RCSTs, respectively, and $Y^*_r = \sum_{j \in R_r} \sum_{k \in C^1} \sum_{c \in C^2} d_{k,c}^l$ and $Y^*_c = \sum_{j \in R_c} \sum_{k \in C^1} \sum_{c \in C^2} d_{k,c}^l$ denote the total numbers of timeslots allocated to rain-fade RCSTs and clear-sky RCSTs, respectively. The values ADR_r' and ADR_c' are simply computed, since the values Y^*_r and Y^*_c are computed as min($\sum_{j \in R_r} d_{j,c}^l, N^*_r$) and min($\sum_{j \in R_c} d_{j,c}^l, N^*_c + N - \sum_{j \in R_r} y^*_j$), respectively.

In general, as B_r increases, the total number of TRF timeslots decreases and the fairness ratio increases. Thus, the smallest B_r (and, thus, $B_c = (W_{sf}/W_f) - B_r$) satisfying the minimal
requirement condition and the fairness condition is the optimal value.

B. Phase 2: Timeslot Amount Determination

In this phase, we try to solve the problem RTAP in order to determine the optimal timeslot amount for each RCST and service class case. However, the problem RTAP is a nonlinear integer programming problem and, thus, there is no polynomial time algorithm for solving that problem. Thus, we decompose the problem RTAP into two subproblems RTAP$_r$ and RTAP$_c$, under the assumption that we give priority to rain-fade RCSTs over clear-sky RCSTs for rain-fade timeslots and, thus, the weighting factor of rain-fade RCSTs is much greater than that of clear-sky RCSTs.

(\text{RTAP}_r\text{)}

\text{Min} \sum_{j \in R_r} \sum_{k \in C_1} \sum_{l \in C_2} u_{jkl} \cdot (d_{jkl} - y_{jkl})

s.t. \quad y_{jkl} \leq d_{jkl}, \quad \forall j \in R_r, \quad k \in C_1, \quad l \in C_2

\sum_{k \in C_1} \sum_{l \in C_2} y_{jkl} \leq Q_j, \quad \forall j \in R_r

\sum_{j \in R_r} \sum_{k \in C_1} \sum_{l \in C_2} y_{jkl} \leq \bar{N}_r - \sum m_j

\sum_{j \in R_r} \sum_{k \in C_1} \sum_{l \in C_2} y_{jkl} \geq m_j, \quad \forall j \in R_r

\forall y_{jkl}; \text{ nonnegative integer.}

(\text{RTAP}_c\text{)}

\text{Min} \sum_{j \in R_c} \sum_{k \in C_1} \sum_{l \in C_2} u_{jkl} \cdot (d_{jkl} - y_{jkl})

s.t. \quad y_{jkl} \leq d_{jkl}, \quad \forall j \in R_c, \quad k \in C_1, \quad l \in C_2

\sum_{k \in C_1} \sum_{l \in C_2} y_{jkl} \leq Q_j, \quad \forall j \in R_c

\sum_{j \in R_c} \sum_{k \in C_1} \sum_{l \in C_2} y_{jkl} \leq \bar{N}_r + \bar{N}_c

\sum_{j \in R_c} \sum_{k \in C_1} \sum_{l \in C_2} y_{jkl} \geq m_j, \quad \forall j \in R_c

\forall y_{jkl}; \text{ nonnegative integer.}

where \bar{N}_r denotes the number of rain-fade timeslots not allocated to rain-fade RCSTs, which is obtained from the optimal solution of the subproblem \text{RTAP}_r.

The first subproblem \text{RTAP}_r considers only rain-fade RCSTs, and the second subproblem \text{RTAP}_c considers only clear-sky RCSTs. In the second subproblem \text{RTAP}_c, we relax the constraint that a clear-sky RCST should not use clear-sky timeslots and rain-fade timeslots together. Thus, the optimal solutions of the subproblems \text{RTAP}_r and \text{RTAP}_c may not satisfy the constraints of RTAP. Then, the sum of the objective values at those solutions becomes a lower bound of RTAP.

The subproblems \text{RTAP}_r and \text{RTAP}_c are sequentially solved by the procedures TAD$_r$ and TAD$_c$. Under the assumptions about $\{u_{jkl}\}$ given in Section III, for the sake of convenience, we set $u_{jkl} = M + (k - 1) \cdot |C_2| + l$ for $j \in R_r$, and $u_{jkl} = (k - 1) \cdot |C_2| + l$ for $j \in R_c$, where M is a big number.\footnote{M should be greater than $|C_1| \cdot |C_2|$. Refer to [9] for the Big-M method.} Note that the lowest data class has index 1 and the highest data class has index $|C_1|$. In general cases, a sorting procedure for $\{u_{jkl}\}$ is necessary, which is very simple. The procedures TAD$_r$ and TAD$_c$ obtain optimal solutions of the subproblems \text{RTAP}_r and \text{RTAP}_c, respectively, by the Proposition 1.

Proposition 1: The procedures TAD$_r$ (Fig. 5) and TAD$_c$ (Fig. 6) obtain optimal solutions of the subproblems \text{RTAP}_r and \text{RTAP}_c, respectively.

Proof: Convergence of Procedure TAD$_c$\footnote{Proof of the convergence of TAD$_c$ is similar.}

\begin{itemize}
 \item Feasibility: The procedure TAD$_c$ always finds a feasible solution. First, in Step 1, each RCST is allocated a certain number of timeslots required to satisfy the minimal
Step 1. (Allocate clear-sky timeslots) /* rain-fade timeslots are allocated like in Procedure TAD, */
\[r_{ce} = 0, \quad y_{j} = \sum_{k \in C_{1}} \sum_{l \in C_{2}} y_{j}^{kl}, \quad R' = R_{c}. \quad R_{c}^{0} = 0. \] Initialize \(Q_{j} \).

WHILE \((R' \neq \emptyset) \) do
\[
\begin{align*}
 j^{*} &= \max_{j} \{ y_{j}, j \in R' \}, \quad R' = R' - \{ j^{*} \}, \\
 r_{c} + y_{j^{*}} &\leq N_{c}, \quad \text{THEN} \quad (r_{c} = r_{c} + y_{j^{*}}, \quad R_{c}^{0} = R_{c}^{0} + \{ j^{*} \}).
\end{align*}
\]

IF \(r_{c} = N_{c} \), then terminate. /* current solution is an optimal solution */

Step 2. (Find a feasible solution)
\[r'_{c} = N_{c} - r_{c}, \quad j^{*} = \min_{j} \{ y_{j} - r'_{c}, j \in R_{c} - R_{c}^{0} \}. \]

IF \(\sum_{j \in R_{c}} m_{j}^{e} + m_{j}^{c} \leq N_{c} \), THEN set \(R_{c}^{0} = R_{c}^{0} + \{ j^{*} \} \) and go to Step 2.1.
ELSE IF \(\sum_{j \in R_{c} - R_{c}^{0}} m_{j}^{e} \leq N_{c} \), THEN go to Step 2.2.
ELSE, go to Step 2.3.

Step 2.1.
FOR \(p = 0, k = 1; k \leq |C_{1}|; k++ \) do
\[R' = R_{c}^{0}. \]

WHILE \((R' \neq \emptyset) \) do
\[
\begin{align*}
 j^{*} &= \max_{j} \{ y_{j}, j \in R' \}, \quad R' = R' - \{ j^{*} \}, \\
 y''_{j}^{kl} &= y_{j}^{kl} - 1, \quad y_{j^{*}}^{kl} = y_{j^{*}} + 1, \quad p = p + 1. \quad \text{IF} \ (p \geq r'_{c}), \quad \text{THEN exit.} ^{*} \text{for} \ k \)
\]

END while.
FOR \(p = 0, k = |C_{1}|; k \geq 1; k-- \) do
\[R' = R_{c}^{0}. \]

WHILE \((R' \neq \emptyset) \) do
\[
\begin{align*}
 j^{*} &= \min_{j} \{ y_{j}, j \in R' \}, \quad R' = R' - \{ j^{*} \}, \\
 y''_{j}^{kl} &= y_{j}^{kl} + 1, \quad y_{j^{*}}^{kl} = y_{j^{*}} - 1, \quad p = p + 1. \quad \text{IF} \ (p \geq r'_{c}), \quad \text{THEN exit.} ^{*} \text{for} \ k \)
\]

END while.

Step 2.2.
Substitute \(R' = R_{c} - R_{c}^{0} \) for \(R' = R_{c}^{0} \) in Step 2.1.
Substitute \(R' = R_{c}^{0} \) for \(R' = R_{c} - R_{c}^{0} \) in Step 2.1.

Step 2.3
Set \(r = N_{c}^{e} \) and \(R_{c}^{0} = R_{c}^{e} \), and substitute \(R_{c} - R_{c}^{0} \) for \(R_{c} \) in Procedure TAD_{c}.
Set \(r = N_{c} \) and \(R_{c}^{0} = R_{c}^{c} \), and substitute \(R_{c} - R_{c}^{0} \) for \(R_{c} \) in Procedure TAD_{c}.

Fig. 7. Procedure ETAD.

requirement. Note that the numbers of clear-sky timeslots and rain-fade timeslots are determined considering the minimal requirement in Phase 1. Next, in Step 2, \(g_{j}^{kl} \) is increased exactly depending upon the number of remaining available timeslots.

- Optimality: Let us relax the integer constraint on decision variables \(g_{j}^{kl} \). Then, RTAP_{p} is relaxed to a linear programming (LP) problem [9]. If an optimal solution of this LP-relaxed problem is integral, then it is an optimal solution of the original problem RTAP_{p}. Since the solution obtained by the procedure TAD_{p} is always integral and is an optimal solution of this LP-relaxed problem, it is an optimal solution of the original problem RTAP_{p}. First, we can know intuitively that the solution obtained by the procedure TAD_{p} is integral. Next, the procedure TAD_{p} converges to the global optimum, since the allocation of the available resources is done by a highest-penalty-first-assigned manner, which is a subprocedure of the simplex method [9, 14]. This completes the proof.

If \(N_{r}^{p} = 0 \), or \(N_{r}^{p} > 0 \) and \(\sum_{j \in R_{c}} \sum_{k \in C_{1}} \sum_{l \in C_{2}} g_{j}^{kl} \leq N_{c} \), where \(g_{j}^{kl} \) is an optimal solution of the subproblem RTAP_{c}, the optimal solutions of the subproblems RTAP_{p} and RTAP_{c} consequently become an optimal solution of RTAP by the Proposition 2.

Proposition 2: If \(N_{r}^{p} = 0 \), or \(N_{r}^{p} > 0 \) and \(\sum_{j \in R_{c}} \sum_{k \in C_{1}} \sum_{l \in C_{2}} g_{j}^{kl} \leq N_{c} \), then \(z_{j}^{*} = 1, j \in R_{r} \) and \(z_{j}^{*} = 0, j \in R_{c} \). Thus, the optimal solutions of the subproblems RTAP_{p} and RTAP_{c} become a feasible solution of RTAP. Finally, since the sum of the objective values at the optimal solutions of the subproblems RTAP_{p} and RTAP_{c} is a lower bound of RTAP, the optimal solutions of the subproblems RTAP_{p} and RTAP_{c} consequently become an optimal solution of RTAP.

If the optimality condition of Proposition 2 is not satisfied, the procedure ETAD is performed (Fig. 7). ETAD finds an optimal solution or a feasible solution from the optimal solutions of the subproblems RTAP_{c} and RTAP_{p}. In the procedure, we define \(R_{c}^{0} \) by the set of clear-sky RCSTs which are allocated clear-sky
timeslots and, thus, $R_c - R_0^c$ is the set of clear-sky RCSTs which are allocated rain-fade timeslots. In Step 1, if $r_c = \bar{N}_c$, then the current solution $\{y_{ij}^k\}$ is an optimal solution, which results from the optimal solutions of the subproblems RTAP$_c$ and RTAP$_r$. If $r_c < \bar{N}_c$, then Step 2 is performed and a feasible solution is found by adjusting $\{y_{ij}^k\}$. Fortunately, the feasible solution found in Step 2 may be an optimal solution.

C. Phase 3: Timeslot Scheduling (TS)

In this section, we propose a simple and efficient algorithm to assign timeslots to each RCST according to the timeslot amount determined in Phase 2. In a superframe, TRF timeslots are numbered from 0 (lowest frequency, first in time) to $|S| - 1$ (highest frequency, last in time), ordered in time then in frequency. Then, the TBTP table is built up iteratively by the procedure TS shown in Fig. 8.

V. PERFORMANCE ANALYSIS

We analyze the computational complexity and optimality gap of the proposed algorithm. Since the DVB-RCS standard is released in 2000, many system-specific resource allocation algorithms are necessary for field application but no algorithm for this system on the rain-fade attenuation issue is found. Thus, instead of comparing these two performance measures, e.g., efficiency and optimality, with other algorithms, we study the computational complexity and extensively simulate for more than 10,000 superframes.

A. Computational Complexity

Our algorithm has the following computational complexities.

- Phase 1: TSD has $O(|R_c|^2)$.

- Phase 2:
 - TAD$_c$ has $O(|R_c| \cdot |C_1| \cdot |C_2|)$;
 - TAD$_r$ has $O(|R_r| \cdot |C_1| \cdot |C_2|)$;
 - ETAD has $\max \{O(|R_r|^2), O(|R_c| \cdot |C_1| \cdot |C_2|)\}$.

- Phase 3: TS has $O(|S|)$.

In a practical system, $|R_c|$, $|R_r|$, $|C_1|$, and $|C_2|$ are much less than $|S|$. For example, we have $|R_c| \approx 128$ and $|S| \approx 65,000$ in an optimally designed superframe pattern [6], and $|C_1|$ is less than the average $|R_c|$ because there are not so many classes. This complexity analysis implies that our algorithm has a linear function of computational complexity on $|S|$. It is expected that this efficiency is very beneficial to the capacity request and assignment function in interactive satellite communications.

B. Simulation Model

In order to use an algorithm in practical systems, it should have real-time solution procedure (i.e., computational efficiency). With this, however, it is imperative to find a suboptimal solution as close to the global optimal solution as possible. Our algorithm is a real-time heuristic algorithm. It finds the optimal solution in some cases but it finds a suboptimal solution in other cases. Thus, we simulate extensive problems for more than 10,000 superframes to analyze the solution quality achieved with our algorithm. In our simulation, we have three target measures: ADR, optimality gap, and computation time. Remind that duality gap of an optimization problem [10], [11] means the normalized distance between the optimal objective value of the primal problem and the optimal objective value of the dual problem. When the dual problem is easier to solve than the primal problem, we generally attack the dual problem as an efficient heuristic alternative (refer to the Lagrangian relaxation algorithm) [10], [11]. However, it is not always guaranteed to find a feasible optimal solution of the primal problem if the primal problem is nonlinear. In this case, the measure gap shows how far the distance (between the true optimal solution and the current solution best ever found) is. In this paper, we introduce optimality gap, which means the normalized distance between the objective value at a feasible solution obtained by our heuristic algorithm and the objective value at the optimal solution.

In Tables II and III, simulation parameters are summarized. We consider five data classes in a return channel of 22.4 MHz: streaming video, FTP traffic, video chatting, web browsing, and e-mail. Also, we consider five delay classes according to the delayed transmission time (in superframes), where delay class l
means that a certain burst is delayed for \(l-1 \) superframe (for \(l = 1, 2, 3, 4 \)) and delay class 5 means that a certain burst is delayed for at least four superframes. Demand of service class \((k, l)\) of RCST \(j\) is randomly generated from a uniform distribution with a randomly chosen period specified in Table II. Demand of service class \((k, l)\) for \(l \geq 2 \) is computed by

\[
d^k_{j_1} = d^k_{j_1-1} - y^k_{j_1-1} \quad \text{(for } l = 2, 3, 4, \text{ and } d^k_{j_0} = \sum_{l=1}^{\infty} (d^k_j - y^k_j)\).
\]

C. Simulation Results and Discussions

Fig. 9 shows the ADR as the average demand of rain-fade RCSTs increases given that the average demand of clear-sky RCSTs \(D_c = 250 \) (in timeslots). It is observed that the number of rain-fade channels \(B_r \) increases as the average demand of rain-fade RCSTs increases. In Fig. 9, we have several intervals \([100, 120), [120, 150), [150, 230), [230, 270), [270, 340),\) and \([340, 600]\), which are labeled as A, B, C, D, E, and F, respectively. In interval A, rain-fade RCSTs are assigned 100% of the demand at \(B_r = 1 \). In interval \((B \cup C \cup D)\), \(B_r \) should be 2 to meet the fairness condition with \(FR_0 = 1 \). In interval \((A \cup B \cup C)\), a certain number of rain-fade timeslots are assigned to clear-sky RCSTs. However, the number of rain-fade timeslots are not available for clear-sky RCSTs in interval D.

Thus, \(ADR_r \) is 100%, whereas \(ADR_c \) decrease in interval C, and \(ADR_r \) decreases, whereas \(ADR_r \) does not decrease in interval D. Although \(ADR_c \) is less than 100% at \(D_c = 200 \), \(B_r \) should be increased by one at \(D_r = 270 \) because the fairness condition should be satisfied, i.e., \(FR \geq FR_0 \). In interval \((E \cup F)\), \(B_r \) should be 3 to meet the fairness condition with \(FR_0 = 1 \). Similar features as shown in interval \((C \cup D)\) are also observed in interval \((E \cup F)\). The dotted line in Fig. 9 shows \(ADR_c \) when residual rain-fade timeslots are not shared by clear-sky RCSTs. As shown in the figure, \(ADR_c \) is improved by sharing of residual rain-fade timeslots when the demand of rain-fade RCSTs is not overflowed(saturated). In Fig. 10, GAP is plotted with the same test set used in Fig. 9, where GAP is usually defined as the relative difference between the optimal objective value A and the objective value at the heuristic solution B as

\[
GAP = \frac{B - A}{A}.
\]

If GAP is zero, then the heuristic solution is optimal. The maximum value of GAP is less than 0.0004 (0.04%), which shows good performance of our algorithm.

Fig. 11 shows the relation between ADR and \(D_c \) given that \(D_r = 250 \) (in timeslots). It is observed that the number of clear-sky channels \(B_c \) increases as \(D_c \) increases. In Fig. 11, we have several intervals \([100, 160), [160, 235), [235, 715), \) and \([715, 850]\), which are labeled as A, B, C, and D, respectively. In interval \((A \cup B)\), a certain number of rain-fade timeslots are available for clear-sky RCSTs because the residual rain-fade timeslots are shared by clear-sky RCSTs, which are overflowed (saturated). \(ADR_r \) and \(ADR_c \) are 100% in interval A; whereas \(ADR_r \) decrease in interval B because of demand overflow of clear-sky RCSTs (\(D_c \) is greater than the number of available timeslots). By procedure TSD (Fig. 4), we obtain that \(B_r = 2 \) in interval C and \(B_c = 3 \) in interval D. Similar features as observed in interval B are also observed in interval C and in interval D, respectively. The dotted line in Fig. 11 shows \(ADR_c \) when residual rain-fade timeslots are not shared by clear-sky RCSTs. It is also observed that \(ADR_c \) is improved by sharing of residual rain-fade timeslots when the demand of rain-fade
RCSTs is not overflowed (saturated). In Fig. 12, GAP is plotted with the same test set used in Fig. 11. The maximum value of GAP is less than 0.0005 (0.05%), which shows good performance of our algorithm. Fig. 13 shows extensive measurements of computation time of our algorithm with Pentium III 1.0 GHz machine. Three kinds of cases are considered in our simulation. In the first case, rain-fade channels are not saturated. This means that the number of rain-fade timeslots is greater than the demand of rain-fade RCSTs, where the residual amount can be assigned to clear-sky RCSTs. In the second case, rain-fade channels are always saturated and, thus, there is no residual rain-fade timeslot available for clear-sky RCSTs. In the first case (no saturation of rain-fade channels), additional scheduling is necessary to assign the residual rain-fade timeslots to clear-sky RCSTs. As a result, the computation time is slightly greater than that in the second case. The third case emulates a general environment, where rain-fade channels are sometimes saturated and sometimes not. After timeslot scheduling, the result of schedule is transformed into a TBTP table [1] and the TBTP table is packetized as transport stream packets, and then the hub broadcasts these packets to RCSTs via a satellite. Scheduling time of about 5 ms is short enough to complete this TBTP table generation and transmission procedure within a certain period of time shorter than the designed superframe duration, e.g., thousands of milliseconds. As shown in the figure, our heuristic algorithm has an excellent computational efficiency.

VI. Conclusion

In ISM systems, such as a DVB-RCS system, it is imperative to provide multirate services in order to guarantee various QoS levels with limited valuable radio resources. Since Ka-band link quality is usually affected by rain-fade attenuation, providing multirate services is even more important to efficiently classify and manage the terminals suffering from rain-fade attenuation.

We have focused on developing an efficient real-time algorithm for timeslot assignment in an ISM network with multirate superframe patterns. We mathematically formulated this timeslot assignment problem as a nonlinear integer programming problem to minimize the overall weighted penalty (maximize the weighted throughput). In order to improve real-time computational efficiency, we developed an efficient heuristic algorithm for an NP-complete problem. We analyzed the computational complexity and performed extensive simulation. Extensive simulation results showed that solutions found by our heuristic algorithm are very close to the global optimal solutions with the gap between the heuristic solution and the optimal solution lain within 0.05%. Thanks to these solution efficiency and excellent solution quality, we believe that the proposed real-time heuristic algorithm can be used for performance improvement in practical systems.

Acknowledgment

The authors are grateful to the anonymous reviewers for their valuable comments. K.-D. Lee expresses appreciation to all the members involved with the broadband satellite access network (BSAN) system development project of the Electronics and Telecommunications Research Institute (ETRI), Daejeon, Korea. The algorithm was in part applied in the BSAN system.
REFERENCES

Ki-Dong Lee (S’00–A’02) received the B.S. and M.S. degrees in operations research and management science, and the Ph.D. degree in industrial engineering (with applications to wireless communication networks) from the Korea Advanced Institute of Science and Technology (KAIST), Daejeon, in 1995, 1997, and 2001, respectively.

As a Senior Member of Engineering Staff, he has been with the Digital Broadcasting Research Division (formerly the Radio and Broadcasting Research Laboratory) of the Electronics and Telecommunications Research Institute (ETRI), Daejeon, Korea, upon his graduation from KAIST. In ETRI, he has been involved with development projects of interactive broadband satellite access systems, where he develops various real-time algorithms for radio resource management and control. His research interests are in the area spanning stochastic modeling, performance analysis, scheduling algorithms, and optimization techniques for radio resource management in broadband wireless and/or satellite networks.

Kun-Nyeong Chang (M’01) received the B.S. degree in international economics from Seoul National University, Seoul, Korea, in 1988 and the M.S. and Ph.D. degrees in management science from the Korea Advanced Institute of Science and Technology (KAIST), Daejeon, in 1990 and 1994, respectively.

From 1994 to 1997, he worked as a Senior Researcher at the Electronics and Telecommunications Research Institute (ETRI), Daejeon, Korea. From 1997 to 2003, he was with the Department of Management Information Systems, Silla University, Busan, Korea. Since 2003, he has been an Associate Professor in the Department of Business Administration, Yonsei University, Wonju, Korea. His research interests are in the areas of combinatorial and nonlinear optimization, and optimal design of communication systems, especially, cellular mobile systems and satellite communication systems.