NUMERICAL INTEGRATION
ACCURACY AND STABILITY
NUMERICAL INTEGRATION

- Time discretization. Integration rules.
- Accuracy of Integration rules.
- Distortion of Network Parameters.
- Numerical Stability
- Critical Damping Adjustment (CDA)
1. **TIME DISCRETIZATION**

- Closed-form analytical solutions of large systems with frequency dependent parameters, switches, and nonlinearities are, in general, very difficult, or at all not possible.

- Best technique in systems with switches and nonlinearities is to discretize time and solve the system equations on successive time steps, i.e., at $t = 0, \Delta t, 2\Delta t,$...

- There are limitations when the system is solved this way:

 - Size of Δt

 - Discretization Rule
 (e.g., trapezoidal, backward Euler, etc.)
2. **FROM DIFFERENTIAL TO DIFFERENCE EQUATIONS**

The behaviour of a simple inductance (or capacitance) allows us to define discrete-time differentiation or integration.

Discrete-Time Differentiation

\[
U = L \frac{d}{dt} i(t)
\]

\[
\frac{i(t) - i(t-\Delta t)}{\Delta t} = \frac{1}{L} U(t)
\]

Attempts

a) \(\frac{i(t) - i(t-\Delta t)}{\Delta t} = \frac{1}{L} U(t) \) \(t_1 = t \) (Backward Euler)

b) \(\frac{i(t) - i(t-\Delta t)}{\Delta t} = \frac{1}{L} U(t-\frac{\Delta t}{2}) \) \(t_1 = \text{middle} \)

c) \(\frac{i(t) - i(t-2\Delta t)}{2\Delta t} = \frac{1}{L} U(t-\Delta t) \) (Mid-point rule)

\(\frac{i(t) - i(t-\Delta t)}{\Delta t} = \frac{1}{L} \frac{U(t) + U(t-\Delta t)}{2} \) Averages not the t’s but the function at end points (Trapezoidal)

(c) José R. Martí, 2018
3. DISCRETE-TIME INTEGRATION

\[U(t) \]

\[\text{Simpson} \quad \text{Backward Euler} \quad \text{Trapezoidal} \quad \text{Forward Euler} \]

\[i(t) \quad L \quad 0 \quad \frac{U(t)}{} \]

\[\int_{t-\Delta t}^{t} U dt = L \int_{t-\Delta t}^{t} di \]

\[\Delta t = L i(t) - L i(t-\Delta t) \]

a) Trapezoidal: \[\text{area} = \frac{U(t) + U(t-\Delta t)}{2} \Delta t = L i(t) - L i(t-\Delta t) \]

b) Backward Euler: \[\text{area} = U(t) \cdot \Delta t = L i(t) - L i(t-\Delta t) \]

c) Forward Euler: \[\text{area} = U(t-\Delta t) \cdot \Delta t = L i(t) - L i(t-\Delta t) \]

d) Simpson (parabola): \[\text{area} = \left[\frac{1}{3} U(t) + \frac{4}{3} U(t-\Delta t) + \frac{1}{3} U(t-2\Delta t) \right] \Delta t = L i(t) - L i(t-2\Delta t) \]

e) Gear 2nd Order (differentiation): \[\frac{3}{2} \left[i(t) - \frac{4}{3} i(t-\Delta t) + \frac{1}{3} i(t-2\Delta t) \right] = \frac{\Delta t}{L} U(t) \]

* UNSTABLE
Accuracy of discretization rules

Analysis Techniques

- Usually in terms of truncation error in time domain solution.
- In circuit analysis frequency response is very important.
- We can more accurately assess performance of discretization rules in the frequency domain.
1. FREQUENCY RESPONSE OF A LINEAR SYSTEM

Take input that has only one frequency:

\[X(t) = e^{j\omega t} = 1 \]

(vector of magnitude one, rotating at velocity \(\omega \))

If the system is linear and has no delays, the response will have the form

\[Y(t) = X(t) \cdot H(\omega) = H(\omega) e^{j\omega t} \]

where \(H(\omega) \) is the magnitude and phase "gain" and equals the transfer function \(H(s) \) evaluated at \(s = j\omega \),

\[H(\omega) = H(s) \bigg|_{s = j\omega} \]
2. **FREQUENCY RESPONSE OF AN INTEGRATOR**

The response of an inductance when \(V \) is input and \(i \) is output gives us the response of an integrator.

Continuous-Time Response

Input: \(V(t) = e^{j\omega t} \)

Output: \(i(t) = Y(\omega) e^{j\omega t} \) to be found

With \(V = L \frac{di}{dt} \),

\[e^{j\omega t} = L Y \omega j e^{j\omega t} \Rightarrow Y(\omega) = \frac{1}{j\omega L} \] or \(Y(s) = \frac{1}{sL} \) for \(s = j\omega \)

The pure integrator is obtained with \(L = 1 \).

\[Y(\omega) = \frac{1}{j\omega L} \]

Admittance of an \(L \) in the continuous-time frequency domain

\[F(\omega) = \frac{1}{j\omega L} \]

(c) José R. Martí, 2018
Response of Integrator (Cont.)

Discrete-Time Response

With Trapezoidal,

\[i(t) - i(t - \Delta t) = \frac{\Delta t}{2L} V(t) + \frac{\Delta t}{2L} V(t - \Delta t) \]

input: \(V(t) = e^{j\omega t} \)

output: \(i(t) = Y_e e^{j\omega t} \) to be found

Substituting,

\[Y_e e^{j\omega t} - Y_e e^{j\omega(t - \Delta t)} = \frac{\Delta t}{2L} e^{j\omega t} + \frac{\Delta t}{2L} e^{j\omega(t - \Delta t)} \]

Factoring out \(e^{j\omega t} \),

\[Y_e(\omega) = \frac{\Delta t}{2L} \frac{e^{j\omega \Delta t} + 1}{e^{j\omega \Delta t} - 1} \]

Admittance of an \(L \) in the discrete-time frequency domain.

\[\begin{align*}
\text{diagram with circuit and equations}
\end{align*} \]
Response of Integrator (Cont. 2)

Accuracy of Integrator

The accuracy of the discrete-time integrator can be expressed by the ratio

\[\frac{H_e(\omega)}{H(\omega)} = \left. \frac{Y_e(\omega)}{Y(\omega)} \right| \omega L = 1 \]

\[= \left(\frac{\Delta t}{2} \right) \frac{e^{j\omega \Delta t} + 1}{1 - j\omega \Delta t} \]

\[\frac{H_e(\omega)}{H(\omega)} = j \left(\frac{\Delta t}{2} \right) \frac{1 - j\omega \Delta t}{1 - j\omega \Delta t} \]

The maximum frequency that may be present in the signals is given by the Sampling Theorem,

\[f_{Ny} = \frac{1}{2\Delta t} = 0.5 \text{ pu} \]

The response beyond this point is unimportant because there are no frequencies beyond this point in the circuit.

\[\text{Tr} \]

\[\text{Ideal} \]

\[f_{\text{Base}} = \frac{1}{\Delta t} \]

\[f(\text{pu}) = f(H_g) \cdot \Delta t \]

\[\text{Since } f(H_g) = \frac{f(\text{pu})}{\Delta t} \]

To move up the frequency limit, decrease the \(\Delta t \)
3. EXAMPLE OF DISCRETIZATION EFFECTS

a) Continuous-Time Solution

\[\bar{V} = 1000 \angle 20^\circ \text{ V (RMS)} \]
\[\bar{Y} = \frac{1}{j\omega L} = \frac{1}{2\pi \times 4000 \times 20 \times 10^{-3}} \]
\[\bar{Y} = 0.0020 \angle -90^\circ \text{ S} \]
\[\bar{I} = \bar{V} \bar{Y} = 2 \angle -70^\circ \text{ A (RMS)} \]

and with the \(\sqrt{2} \) factor to convert from RMS to peak,

\[i(t) = 2.83 \cos (\omega t - 70^\circ) \text{ A} \]

Exact Solution.

> What we would see on an oscilloscope.
Example of Discretization Effects (Cont.)

b) Discrete-Time Solution with Trapezoidal

i) Solution with $\Delta t = 0.1 \text{ ms}$

\[
\bar{V} = 1000 \left[20^\circ \text{ V} \right] \text{ given.}
\]

\[
\bar{V}_e = \frac{\Delta t}{2L} \frac{e^{j\omega t} + 1}{e^{j\omega t} - 1} = \frac{10^{-4}}{4 \times 10^{-3}} \frac{1}{1 - 1 - 40^\circ}
\]

\[
= 0.0025 \frac{1}{144^\circ - 1}
\]

\[
\bar{V}_e = 0.00081 \left[-90^\circ \text{ S} \right] \text{ Way off correct}
\]

\[
\bar{I} = \bar{V}_e \bar{V} = 0.81 \left[-70^\circ \right]
\]

\[
l(t) = 1.15 \cos (\omega t - 70^\circ) \text{ A}
\]

For the chosen Δt,

\[
\left(59\% \text{ error} \right) \text{ correct}
\]

\[
\frac{f_{Ny}}{2\Delta t} = \frac{1}{2 \times 10^{-4}} = 5000 \text{ Hz}
\]

Source $= 4,000 \text{ Hz}$ which is too close to f_{Ny}

(It should be $\frac{1}{2} \text{ to } \frac{1}{4}$)

(c) José R. Martí, 2018
ii) Solution with $\Delta t = 0.01 \text{ ms}$

\[
\overline{v} = 1000 \frac{\text{m}}{\text{s}} \quad \text{given}
\]

\[
\overline{v} = \frac{\Delta t}{2\pi} \frac{e^{j\omega \Delta t} + 1}{e^{j\omega t} - 1} = \frac{10^{-5}}{40 \times 10^{-3}} \frac{1 + 1}{1 - 14.4^\circ - 1}
\]

\[
\overline{y_e} = 0.0020 \underbrace{| -90^\circ |}_{\text{correct! correct}} \quad S
\]

\[
\overline{V} = \overline{y_e} \overline{V} = 2 | -70^\circ | \quad A
\]

\[
\overline{i}(t) = 2.83 \cos(\omega t - 70^\circ) \quad A
\]

\[
\text{We would now get the correct result with SPICE or the EMTP!}
\]

Notice that now,

\[
f_{Ny} = \frac{1}{2\Delta t} = \frac{1}{2 \times 10^{-5}} = 50,000 \text{ Hz}
\]

and the source frequency of 4,000 Hz is

\[
\frac{1000}{50,000} < \frac{1}{10} \text{ of } f_{Ny}
\]
4. DISTORTION OF NETWORK PARAMETERS

Distortion of L and C by Trapezoidal

With trapezoidal

\[Z_e = \frac{1}{Y_e} = \frac{2L}{\Delta t} \frac{e^{j\omega \Delta t} - 1}{e^{j\omega \Delta t} + 1} \]
\[= \frac{2L}{\Delta t} \frac{e^{j\omega \Delta t/2} - e^{-j\omega \Delta t/2}}{e^{j\omega \Delta t/2} + e^{-j\omega \Delta t/2}} \]
\[Z_e = \left(\frac{2L}{\Delta t}\right) j \tan \left(\frac{\omega \Delta t}{2}\right) \]

Defining an equivalent L such that
\[Z_e = j\omega L_e \]
(by analogy with continuous time)

\[L_e(\omega) = L \frac{\tan \left(\frac{\omega \Delta t/2}{2}\right)}{\left(\frac{\omega \Delta t}{2}\right)} \]

Continuous Time
\[L \quad j\omega L \]

Discrete-Time with Trapezoidal
\[R = \frac{2L}{\Delta t} \quad \frac{\omega L_e}{\Delta t} \quad \text{Frequency Domain} \]

Equivalent
\[L_e(\omega) \quad \frac{\omega L_e}{\Delta t} \]

For \(\omega \Delta t \to 0 \), \(L_e \to L \)
For \(\frac{\omega \Delta t}{2} = \frac{\pi}{2} \), \(L_e \to \infty \)
\[\omega \Delta t = \pi, \quad 2\pi f \Delta t = \pi \]
\[f = \frac{1}{2\Delta t} = f_{Ny} \]
\[\frac{L_e}{L} \to 0 \quad \frac{L_e}{L} \to \infty \]
\[f \to 0 \quad f \to \frac{1}{2\Delta t} = f_{Ny} \]

Which is what the continuous-time L is when \(f \to \infty \). There is a frequency warping effect, but

(c) José R. Martí, 2018
Distortion of L and C by Trapezoidal (Cont.)

If the analysis is repeated for a capacitance \(C \), the same distortion factor is found:

\[
L_e = k(\omega) L \\
C_e = k(\omega) C
\]

\[
K(\omega) = \frac{\tan \left(\frac{\omega \Delta t}{2} \right)}{\left(\frac{\omega \Delta t}{2} \right)}
\]

\[
X_e = \omega L_e = \omega k(\omega) L = \omega e L \\
B_e = \omega C_e = \omega k(\omega) C = \omega e C
\]

The distortion on the \(L \) and \(C \) can also be viewed as a "frequency warping" effect, where \(\omega e = k(\omega) \omega \) and infinity is located at \(f = \frac{1}{2\Delta t} \).
5. DISTORTION OF L AND C BY BACKWARD EULER RULE

With the backward Euler rule, for an inductance \(L \)

\[
i(t) - i(t - \Delta t) = \frac{\Delta t}{L} \, V(t)
\]

input: \(V(t) = e^{j\omega t} \)

output: \(i(t) = Ye \, e^{j\omega t} \)

Substituting,

\[
Ye \, e^{j\omega t} - Ye \, e^{j\omega (t - \Delta t)} = \frac{\Delta t}{L} \, e^{j\omega t}
\]

\[
Ye(\omega) = \frac{\Delta t}{L} \, \frac{e^{j\omega \Delta t}}{e^{j\omega \Delta t} - 1}
\]

or,

\[
Ye(\omega) = \frac{\Delta t}{L} \, \frac{e^{j\omega \Delta t/2}}{e^{j\omega \Delta t/2} - e^{-j\omega \Delta t/2}}
\]

\[
Ye(\omega) = \frac{\Delta t}{L} \, \frac{\cos \frac{\omega \Delta t}{2} + j \sin \frac{\omega \Delta t}{2}}{2j \sin \frac{\omega \Delta t}{2}}
\]

\[
Ye(\omega) = \left(\frac{\Delta t}{2L} \right) \left(\frac{\Delta t}{2L} \right) \frac{1}{j \tan \left(\frac{\omega \Delta t}{2} \right)}
\]

From the form of \(Ye(\omega) \),

\[
Ye = \frac{1}{Re} + \frac{1}{j\omega Le}
\]

\[
Re = \frac{2L}{\Delta t} \quad \text{Resistance}
\]

\[
Le = L \left(\frac{\tan \left(\frac{\omega \Delta t}{2} \right)}{\frac{\omega \Delta t}{2}} \right) \quad \text{Same as for \text{Trapezoidal dist.}}
\]

\[
\text{(c) José R. Martí, 2018}
\]
6. TRAPEZOIDAL VS. BACKWARD EULER

<table>
<thead>
<tr>
<th>Circuit Element</th>
<th>Trapezoidal</th>
<th>Backward Euler</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>L_{e}</td>
<td>L_{e}</td>
</tr>
<tr>
<td>C</td>
<td>C_{e}</td>
<td>C_{e} <sup>Re = $\frac{\alpha}{2C}$</sup></td>
</tr>
</tbody>
</table>

$$L_{e} = L \frac{\tan\left(\frac{\omega t}{2}\right)}{\left(\frac{\omega t}{2}\right)}$$

$$C_{e} = C \frac{\tan\left(\frac{\omega t}{2}\right)}{\left(\frac{\omega t}{2}\right)}$$

In addition to the distortion in the value of the parameter L or C, backward Euler adds a fictitious resistance to the circuit. This resistance produces additional losses but no relative phase distortion. All frequencies remain synchronized.
7. COMPARISON OF FREQUENCY RESPONSES

- All rules give good magnitude response for frequencies up to 0.05 to 0.1 in p.u.
 \[\Rightarrow \frac{1}{10} \text{th to } \frac{1}{5} \text{th of } f_{\text{Ny}} \]

- Simpson has very good response but is unstable.

- Trapezoidal does not introduce phase distortion but can have problems at discontinuities.

- Backward Euler has no problems at discontinuities but presents strong phase distortion.

- Gear is a compromise between trapezoidal and backward Euler.

- CDA combines best of trap with best of B.E.
STABILITY OF DISCRETIZATION RULES

- Difference Equations
- Z-Domain Transfer Functions
- Critical Damping Adjustment CDA.
1. DIFFERENCE EQUATIONS

Solution of a Differential Equation

\[R \frac{di}{dt} + L \frac{d^2i}{dt^2} = U \]
\[\frac{d^2i}{dt^2} + \frac{R}{L} i = \frac{1}{L} U \]

Total Solution = Steady-state + Transient

a) Transient

From "homogeneous solution" (no forcing function)

\[\frac{d^2i}{dt^2} + \frac{R}{L} i = 0 \]

Solution has the form \(AE^{rt} \)

\[r^2 + \frac{R}{L} = 0 \]
\[r = -\frac{R}{L} \]

\[i_h(t) = C e^{-\frac{R}{L}t} \]

Assume \(U(t) \) is input

Final state transition from initial state to final steady-state

\[\frac{d}{dt} \]

\[\frac{E}{R} \]

Initial state \(\rightarrow \) Transient

(c) José R. Martí, 2018
Solution of a Differential Equation (Cont.)

b) Steady State
A "particular" solution, according to the input or "forcing function" is of the form \(l_{ss} = \frac{E}{R} \). The steady-state solution is:

\[
\frac{R}{L} B = \frac{1}{L} E \Rightarrow B = \frac{E}{R}
\]

(Could be written directly from the circuit).

\(l_{ss}(t) = \frac{E}{R} \)

(c) Complete Solution

\[
i(t) = i(t) + l_{ss}(t) = C e^{-\frac{R}{L} t} + \frac{E}{R}
\]

\(\text{Pole is negative} \)
\(\text{grows to zero as } t \to \infty \Rightarrow \text{STABLE}! \)

For a system to be stable \(-\text{transient} \to \text{dies out} \)

The form of the transient solution is independent of the initial and final states. The arbitrary constant does the job of matching the states.

In the example,

\[
t = 0, \quad i = 0 \Rightarrow C + \frac{E}{R} = 0 \Rightarrow C = -\frac{E}{R}
\]

\[
i(t) = \frac{E}{R} \left(1 - e^{-\frac{E}{R} t} \right)
\]

(c) José R. Martí, 2018
2. **Analytical Solution of a Difference Equation**

Using trapezoidal on the L

\[
\frac{\Delta t}{2 + \Delta t/T} \left(\frac{B}{A} \right) i(t) = \frac{B}{2 + \Delta t/T} \frac{\Delta t/L}{2 + \Delta t/T} U(t) + \frac{\Delta t/L}{2 + \Delta t/T} U(t - \Delta t)
\]

\[T = \frac{L}{R} = \text{time constant}\]

Rewriting as a difference equation on \(i(t)\), for \(U(t)\) as input,

\[i(t) - A i(t - \Delta t) = B U(t) + B U(t - \Delta t)\]

Following the well-known solution procedure of the solution of a differential equation:

Total Solution = Transient + Steady State
Solution of a Difference Equation (cont.)

a) Transient

From equation with no forcing function (homogeneous equation)

\[l(t) - A i(t - \Delta t) = 0 \]

Let \(K = \) solution step number, e.i.,

\[t = K \Delta t \]

\(\{ t = 0, \Delta t, 2\Delta t, \ldots \} \)

In terms of the solution step,

\[l(k) - A i(k-1) = 0 \]

homogeneous equation

Assume solution has the form \(l(k) = p^k \)

\[p^k - Ap^{k-1} = 0 \]

Factoring out \(p^k \),

\[1 - Ap^{-1} = 0 \]

\(P = A = \frac{2 - \Delta t / T}{2 + \Delta t / T} \)

\[\boxed{l_h(k) = C P^k} \]

Transient Solution

constant (from initial conditions)
Solution of a Difference Equation (Cont. 2)

b) Steady State

Directly from the circuit,
\[\text{iss}(k) = \frac{E}{R} \]

Steady-State Solution

c) Complete Solution

\[i(k) = i_h(k) + \text{iss}(k) = C P^k + \frac{E}{R} \]

System Stable
\[\Rightarrow P < 1 \]

Initial Conditions:
\[i(0) = 0 \] for \(k = 0 \) \[\Rightarrow i(0) = C + \frac{E}{R} \], \(C = -\frac{E}{R} \)

\[i(k) = \frac{E}{R} (1 - P^k) \]

\[P = \frac{2 - \Delta t / T}{2 + \Delta t / T} \]

\[K = \frac{t}{\Delta t} \]

Discrete-Time Solution for Trapezoidal

(c) José R. Martí, 2018
3. STABILITY OF THE TRANSIENT SOLUTION

Continuous-Time System:

Transient Solution:
\[i(t) = \sum_{n=1}^{N} C_n e^{-p_n t} \]

STABLE \(\Rightarrow \) \(p_1, p_2, \ldots, p_n > 0 \) or POLES \(\leq 0 \).

Transfer Function:
\[H(s) = \frac{(s+g_1)(s+g_2)\cdots(s+g_n)}{(s+p_1)(s+p_2)\cdots(s+p_n)} \]

poles give the exponential constants

Discrete-Time System:

Transient Solution:
\[i(k) = \sum_{n=1}^{N} C_n p_n^k \]

STABLE \(\Rightarrow \) \(|p_1|, |p_2|, \ldots, |p_n| < 1 \)

Transfer Function:
\[H(z) = \frac{(z+g_1)(z+g_2)\cdots(z+g_n)}{(z+p_1)(z+p_2)\cdots(z+p_n)} \]

\(z \)-domain transfer function

\(z \)-poles give the power terms

(c) José R. Martí, 2018
4. Z-TRANSFORM

Provides compact notation for analysis of discrete-time systems.
Analogous to Fourier or bilateral Laplace in continuous-time systems.

Continuous Time:
\[Y(t) \xrightarrow{\mathcal{F}_s} \mathcal{L}^{-s} Y(s) \quad s = j\omega \text{ for Fourier} \]

Discrete Time:
\[y(t-n\Delta t) \xrightarrow{\mathcal{Z}} z^{-n} Y(z) \quad z = \text{complex variable} \]

Frequency Response from Z-Transform:
Let \(n=1 \) and \(s = j\omega \),
\[y(t-n\Delta t) \xrightarrow{\mathcal{F}} e^{-jn\omega t} Y(\omega) \]
\[y(t-n\Delta t) \xrightarrow{\mathcal{Z}} Z^{-1} Y(z) \]

If we make \(z = e^{j\omega t} \), we get the frequency response of the discrete-time system.
5. TRANSFER FUNCTION IN Z-DOMAIN

Inductance discretized with trapezoidal:

\[i(t) - i(t-\Delta t) = \frac{\Delta t}{2L} u(t) + \frac{\Delta t}{2L} u(t-\Delta t) \]

Applying Z-Transform:

\[I(z) - z^{-1} I(z) = \frac{\Delta t}{2L} V(z) + \frac{\Delta t}{2L} z^{-1} V(z) \]

\[\frac{I(z)}{V(z)} = Y_e(z) = \frac{\frac{\Delta t}{2L}}{z - 1} \quad \text{Transfer function in Z-Domain} \]

By making \(z = e^{j\omega t} \) we get the frequency response of the discretized:

\[Y_e(\omega) = \frac{\frac{\Delta t}{2L}}{e^{j\omega t} - 1} \quad \text{Result obtained earlier for frequency response} \]
6. **Z-Domain Transfer Function of Integration Rules**

\[
\frac{L(t)}{V(t)} \quad Y_e(s) = \frac{I(s)}{V(s)} = \text{integrator}
\]

Rule

Trapezoidal: \(Y_e(s) = \left(\frac{\Delta t}{L} \right) \frac{1}{2} \frac{3+1}{s-1} \)

Backward Euler: \(Y_e(s) = \left(\frac{\Delta t}{L} \right) \frac{3}{s-1} \)

Simpson: \(Y_e(s) = \left(\frac{\Delta t}{L} \right) \frac{3^2 + 4\cdot3 + 1}{3^2 - 1} \)

Gear 2nd Order: \(Y_e(s) = \left(\frac{\Delta t}{L} \right) \frac{2s^2}{3s^2 - 4s + 1} \)

Poles & zeroes

- \(p_1 = 1 \) Stable Integrator
- \(z_1 = -1 \) Stable Differentiator *
- \(p_1 = 1 \) Stable Integrator
- \(z_1 = 0 \) Stable Differentiator **
- \(p_1 = 1 \) Stable Integrator *
- \(p_2 = -1 \)
- \(z_1 = -0.268 \) Stable Differentiator
- \(z_2 = -3.732 \) Unstable Differentiator
- \(p_1 = 1 \) Stable Integrator
- \(p_2 = 0.93 \)
- \(z_1 = 0 \) Stable Differentiator **
- \(z_2 = 0 \)

* Bounded oscillations at discontinuities

** Critical damping

(c) José R. Martí, 2018
A step current into an inductance is a discontinuity because physically current cannot change instantly in an L (the same applies to a step voltage into a capacitance).

During simulation, this is a common situation during operation of ideal switches or ideal power electronics components.

Continuous-Time Solution

Even though not physically possible, the problem is defined analytically:

\[V = L \frac{di}{dt}, \quad i(t) = U(t) \]

\[\Rightarrow V(t) = L \delta(t) \] impulse function

\[U(t) \] discrete

\[\delta(t) \] discrete
Discontinuities (Cont.)

DISCRETE-TIME SOLUTIONS

Trapezoidal \(u(t) = -u(t-\Delta t) + \frac{2L}{\Delta t} i(t) - \frac{2L}{\Delta t} i(t-\Delta t) \)

Backward Euler \(u(t) = \frac{L}{\Delta t} i(t) - \frac{L}{\Delta t} i(t-\Delta t) \)

Trapezoidal

<table>
<thead>
<tr>
<th>(t)</th>
<th>(i(t))</th>
<th>(u(t))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(\Delta t)</td>
<td>1</td>
<td>2L/\Delta t</td>
</tr>
<tr>
<td>2(\Delta t)</td>
<td>1</td>
<td>-2L/\Delta t</td>
</tr>
<tr>
<td>3(\Delta t)</td>
<td>1</td>
<td>2L/\Delta t</td>
</tr>
<tr>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
</tr>
</tbody>
</table>

Backward Euler

<table>
<thead>
<tr>
<th>(t)</th>
<th>(i(t))</th>
<th>(u(t))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(\Delta t)</td>
<td>1</td>
<td>L/\Delta t</td>
</tr>
<tr>
<td>2(\Delta t)</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>3(\Delta t)</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
</tr>
</tbody>
</table>

Sustained oscillations, Ave. ok

No oscillations. Correct area for the impulse.

(c) José R. Martí, 2018
8. CDA PROCEDURE

Trapezoidal with CDA

<table>
<thead>
<tr>
<th>t</th>
<th>i(t)</th>
<th>U(t)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BE</td>
<td>Δt/2</td>
<td>1</td>
</tr>
<tr>
<td>BE</td>
<td>Δt</td>
<td>1</td>
</tr>
<tr>
<td>Trap</td>
<td>2Δt</td>
<td>1</td>
</tr>
<tr>
<td>Trap</td>
<td>3Δt</td>
<td>1</td>
</tr>
</tbody>
</table>

Transient Simulation with CDA

1. Use trapezoidal normally.
2. If a discontinuity occurs, change to backward Euler and perform two Δt/2 solution steps.
3. Go back to trapezoidal until next discontinuity.

CDA

\[U(t) = \frac{v}{Δt} \]

\[\text{area} = L \]

When to use CDA?

1. Ideal-switch operation.
2. Ideal diodes, thyristors, etc.
3. When changing regions in piecewise linear elements.
4. In synchronous machine model.

(c) José R. Martí, 2018
CDA Procedure (Cont.)

\[i(t) \quad L \quad U(t) \quad \Rightarrow \quad i(t) \quad R \quad C \quad \frac{C}{\Delta t} \quad \frac{C}{\Delta t} \quad \frac{C}{\Delta t} \quad V(t) \]

Trapezoidal with \(\Delta t \):

\[R = \frac{2L}{\Delta t} \quad C \frac{C}{\Delta t} = -V(t - \Delta t) - \frac{C}{\Delta t} i(t - \Delta t) \]

Backward Euler with \(\Delta t \):

\[R = \frac{L}{\Delta t} \quad C \frac{C}{\Delta t} = -\frac{L}{\Delta t} i(t - \Delta t) \]

Backward Euler with \(\Delta t/2 \) (for CDA):

\[R = \frac{L}{\Delta t/2} = \frac{2L}{\Delta t} \quad C \frac{C}{\Delta t} = -\frac{2L}{\Delta t} i(t - \frac{\Delta t}{2}) \]

Same as for trapezoidal!

\[\Rightarrow \text{Network } [C] \text{ matrix does not change. Only history formula changes.} \]
Results with and without CDAs are shown on next two pages.

CDA

- No damping resistances needed across inductances with

symmetric during non-conduction.

\[R = 10 \, \Omega \]

\(R = 10 \, \Omega \) in parallel with diodes, to keep voltages

- Without snubber circuits, connect large resistances (e.g.:

- With CDAs, snubber circuits are not needed, if represented,

\[R = 10 \, \Omega \]

1-phase diode bridge rectifier from N. Mohan, „Computer

Exercises for Power Electronics Studies“, 1990.
1-PHASE DIODE BRIDGE RECTIFIER
Voltages. Scale: $10^{\times}(2)$

Time scale: $10^{\times}(-1)$ s.
Solution method remains linear, when flux becomes larger than knee, solution switches from unsaturated linear slope to saturated slope.

- Nonlinear inductance in DC/EPRI EMT and ATP.
- Generalization to more than two slopes is the "type 98" transformers.
- Approximation for nonlinear magnetizing inductances of such a two-slope inductance is often a reasonable approximation for a piecewise linear inductance by:

\[L_1 \begin{cases} \frac{\partial}{\partial \phi} = p_1 \frac{\partial}{\partial \phi} = p_2 \end{cases} \]

The nonlinear element is approximated by a piecewise linear elements method.

- Solution of nonlinear elements with the composition of nonlinear representations.

The EMT uses two methods for nonlinear elements:
Effect exaggerated in both figures.

\[L_2 \text{-slope after temporary overshoot:} \]

MicroTran Version 2.06 forces solution back onto specified.

\[\gamma \]

Specified curve

Overshoot

Point on: discovered to be above \(\gamma \) knee. It follows \(L_2 \)-slope from that.

Most EMTP versions have an "overshoot" when \(\gamma \) is