Trellis-Based Equalization for Sparse ISI Channels Revisited

Jan Mietzner¹ Sabah Badri-Hoeher¹ Ingmar Land²
Peter A. Hoeher¹

¹Information and Coding Theory Lab, University of Kiel, Germany
{jm,sbh,ph}@tf.uni-kiel.de

²Digital Communications Division, Aalborg University, Denmark
il@kom.aau.dk

ISIT 2005, Adelaide, Australia
September 4-9, 2005
Sparse ISI Channels

Sparse ISI channels are encountered in many high-data-rate communication systems (wireless & wireline)
Sparse ISI channels are encountered in many high-data-rate communication systems (wireless & wireline)

Discrete-time channel impulse response (CIR): **Large** memory length L, only **few** non-zero channel coefficients ($G \ll L$)

\[
\mathbf{h} := \begin{bmatrix}
 h_0 & 0 & \ldots & 0 & h_1 & 0 & \ldots & 0 & h_2 & \ldots & h_{G-1} & 0 & \ldots & 0 & h_G
\end{bmatrix}^T
\]

- f_0 zeros
- f_1 zeros
- f_{G-1} zeros
Sparse ISI channels are encountered in many high-data-rate communication systems (wireless & wireline)

Discrete-time channel impulse response (CIR): Large memory length L, only few non-zero channel coefficients ($G \ll L$)

$$h := [h_0 \underbrace{0 \ldots 0}_{f_0 	ext{ zeros}} h_1 \underbrace{0 \ldots 0}_{f_1 	ext{ zeros}} h_2 \ldots h_{G-1} \underbrace{0 \ldots 0}_{f_{G-1} 	ext{ zeros}} h_G]^T$$

Special case: Zero-pad channel

$$f_0 = f_1 = \ldots = f_{G-1} =: f \geq 1$$
Equalization for Sparse ISI Channels

Discrete-time channel model

\[y[k] = h_0 x[k] + \sum_{g=1}^{G} h_g x[k-d_g] + n[k] \]

- \(y[k] \): \(k \)th received sample
- \(x[k] \): \(k \)th transmitted data symbol
- \(n[k] \): \(k \)th AWGN sample
- \(d_g \): Position of \(h_g \) within \(h \)
Discrete-time channel model

\[
y[k] = h_0 x[k] + \sum_{g=1}^{G} h_g x[k-d_g] + n[k]
\]

- \(y[k] \): \(k \)th received sample
- \(x[k] \): \(k \)th transmitted data symbol
- \(n[k] \): \(k \)th AWGN sample
- \(d_g \): Position of \(h_g \) within \(h \)

Due to large channel memory length, **efficient** equalization with reasonable **complexity** is a demanding task.
Discrete-time channel model

\[y[k] = h_0 x[k] + \sum_{g=1}^{G} h_g x[k-d_g] + n[k] \]

- \(y[k] \): \(k \)th received sample
- \(x[k] \): \(k \)th transmitted data symbol
- \(n[k] \): \(k \)th AWGN sample
- \(d_g \): Position of \(h_g \) within \(h \)

Due to large channel memory length, efficient equalization with reasonable complexity is a demanding task.

Here: Trellis-based equalization (based on VA or BCJRA)

MLSE prohibitive \(\Rightarrow M^L \) trellis states (\(M \)-ary data symbols)
Exploiting the sparse channel structure, reduced-complexity algorithms can be derived.
Existing Solutions

Exploiting the sparse channel structure, reduced-complexity algorithms can be derived

Zero-pad channel:
- McGinty/Kennedy/Hoeher’98: Parallel-trellis VA (P-VA)
- Lee/McLane’02: Parallel-trellis BCJRA (P-BCJRA)
Existing Solutions

Exploiting the sparse channel structure, **reduced-complexity** algorithms can be derived

Zero-pad channel:

- McGinty/Kennedy/Hoehler’98: Parallel-trellis VA (P-VA)
- Lee/McLane’02: Parallel-trellis BCJRA (P-BCJRA)

⇒ Still **optimal** in the sense of MLSE
⇒ Based on parallel **regular** trellises
Existing Solutions

Exploiting the sparse channel structure, reduced-complexity algorithms can be derived.

Zero-pad channel:
- McGinty/Kennedy/Hoeher’98: Parallel-trellis VA (P-VA)
- Lee/McLane’02: Parallel-trellis BCJRA (P-BCJRA)

⇒ Still optimal in the sense of MLSE
⇒ Based on parallel regular trellises

General sparse channel:
- Benvenuto/Marchesani’96: Multi-trellis VA (M-VA)

⇒ Based on parallel irregular (i.e., time-varying) trellises
Introduction

Complexity Reduction Without Loss of Optimality

- Unified Framework Based on Factor Graphs
- Recapitulation of the P-VA and the M-VA
- Drawbacks of the Existing Solutions

Simple Equalization Scheme for General Sparse ISI Channels

Conclusions
Decomposition into multiple parallel trellises

Key question:

Which symbol decisions $\hat{x}[k], 1 \leq k \leq K_B$ (K_B block length) are influenced by a certain symbol hypothesis $\tilde{x}[k_0]$?
Decomposition into multiple parallel trellises

Key question:
Which symbol decisions $\hat{x}[k]$, $1 \leq k \leq K_B$ (K_B block length) are influenced by a certain symbol hypothesis $\tilde{x}[k_0]$?

- Suppose, a certain decision $\hat{x}[k_1]$ is not influenced by $\tilde{x}[k_0]$
- Suppose, there are no symbol decisions $\hat{x}[k]$ that are influenced by both $\tilde{x}[k_0]$ and $\tilde{x}[k_1]$
Decomposition into multiple parallel trellises

Key question:

Which symbol decisions $\hat{x}[k], 1 \leq k \leq K_B$ (K_B block length) are influenced by a certain symbol hypothesis $\tilde{x}[k_0]$?

- Suppose, a certain decision $\hat{x}[k_1]$ is not influenced by $\tilde{x}[k_0]$
- Suppose, there are no symbol decisions $\hat{x}[k]$ that are influenced by both $\tilde{x}[k_0]$ and $\tilde{x}[k_1]$

$\Rightarrow \tilde{x}[k_0]$ and $\tilde{x}[k_1]$ can be accommodated in separate trellises without loss of optimality
Example 1: \(h := [h_0 \ 0 \ 0 \ 0 \ 0 \ 0 \ h_1 \ 0 \ h_2]^T \) \((L=8, \ G=2) \)
Example 1: \[h := [h_0 \ 0 \ 0 \ 0 \ 0 \ 0 \ h_1 \ 0 \ h_2]^T \quad (L=8, \ G=2) \]
Framework for Complexity Reduction

Example 1: \(h := \begin{bmatrix} h_0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}^T \quad (L=8, \ G=2) \)

\[
\begin{align*}
y[k_0] &= h_0 x[k_0] + h_1 x[k_0-6] + h_2 x[k_0-8] \\
y[k_0+6] &= h_0 x[k_0+6] + h_1 x[k_0] + h_2 x[k_0-2] \\
y[k_0+8] &= h_0 x[k_0+8] + h_1 x[k_0+2] + h_2 x[k_0]
\end{align*}
\]
Example 1: \(h := [h_0 \ 0 \ 0 \ 0 \ 0 \ 0 \ h_1 \ 0 \ h_2]^T \) \((L=8, \ G=2) \)
Example 1: \(h := [h_0 \ 0 \ 0 \ 0 \ 0 \ 0 \ h_1 \ 0 \ h_2]^T \) \((L=8, \ G=2) \)

\[\begin{align*}
\bar{x}[k_0] \\
 x[k_0] & \ x[k_0+1] & \ x[k_0+2] & +3 & +4 & +5 & +6 & +7 & +8 & +9 & +10 & +11 & +12 & +13 & +14 & +15 & x[k_0+16] \\
y[k_0] & \ y[k_0+1] & \ y[k_0+2] & +3 & +4 & +5 & +6 & +7 & +8 & +9 & +10 & +11 & +12 & +13 & +14 & +15 & y[k_0+16]
\end{align*}\]

\(\Rightarrow \) Two parallel (regular) trellises are still optimal!

\(\Rightarrow \) Parallel-trellis VA/BCJRA
Example 2: \[h := [h_0 \ 0 \ 0 \ 0 \ 0 \ 0 \ h_1 \ h_2]^T \quad (L=8, \ G=2) \]
Framework for Complexity Reduction

Example 2: \[h := \begin{bmatrix} h_0 & 0 & 0 & 0 & 0 & 0 & h_1 & h_2 \end{bmatrix}^T \quad (L=8, \ G=2) \]

⇒ Decomposition into parallel regular trellises not possible
(without loss of optimality)!
Example 2: \(h := [h_0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ h_1 \ h_2]^T \) \((L=8, \ G=2) \)

⇒ Decomposition into parallel regular trellises not possible (without loss of optimality)!

Multi-trellis VA neglects most of the dependencies ⇒ suboptimal!
Alternative solution for **general sparse channels**: Suboptimal parallel-trellis VA/BCJRA (McGinty/Kennedy/Hoeher’98, Lee/McLane’02)
Alternative solution for **general sparse channels**: Suboptimal parallel-trellis VA/BCJRA (McGinty/Kennedy/Hoeher’98, Lee/McLane’02)

(a) Find an underlying zero-pad CIR similar to the given CIR
Alternative solution for **general sparse channels**: Suboptimal parallel-trellis VA/BCJRA (McGinty/Kennedy/Hoeher’98, Lee/McLane’02)

(a) Find an underlying zero-pad CIR similar to the given CIR
(b) Define the parallel trellis diagrams
Alternative solution for **general sparse channels:**

Suboptimal parallel-trellis VA/BCJRA

(McGinty/Kennedy/Hoeher’98, Lee/McLane’02)

(a) Find an underlying zero-pad CIR similar to the given CIR
(b) Define the parallel trellis diagrams
(c) Perform decision feedback between the parallel trellises
Drawbacks

(a) Fading channel
(a) Fading channel \Rightarrow Start all over again!
(a) Fading channel \Rightarrow Start all over again!
(b) In practice, no exact zero coefficients
Drawbacks

(a) Fading channel ⇒ Start all over again!
(b) In practice, no exact zero coefficients

Our approach

It does not seem useful to **explicitly** utilize the **sparse** channel structure

⇒ How good are **standard** suboptimal equalization techniques?
Drawbacks

(a) Fading channel ⇒ Start all over again!
(b) In practice, no exact zero coefficients

Our approach

Use **prefiltering** in conjunction with **standard** reduced-complexity **trellis-based equalizer**

⇒ Tackle **general** sparse fading CIRs & provide performance **close** to the matched filter bound (MFB)
Outline

▶ Introduction

▶ Complexity Reduction Without Loss of Optimality

▶ Simple Equalization Scheme for General Sparse ISI Channels
 - Considered Receiver Structure
 - Numerical Results

▶ Conclusions
Considered Receiver Structure

\[x[k] \rightarrow \text{ISI channel + AWGN} \rightarrow y[k] \rightarrow \text{Linear prefilter} \rightarrow z[k] \rightarrow \text{Trellis-based equalizer} \rightarrow \hat{x}[k] \]

- **Linear prefilter** that can be computed **efficiently**
 (with standard techniques available in the literature)
Considered Receiver Structure

- **Linear prefilter** that can be computed **efficiently** (with standard techniques available in the literature)
- **Standard** reduced-complexity **trellis-based equalizer** (not specifically designed for sparse ISI channels, since sparse CIR structure is normally lost after prefiltering)

⇒ Solely the linear prefilter is adjusted to the current CIR
Considered Receiver Structure

\[x[k] \xrightarrow{\text{ISI channel} + \text{AWGN}} y[k] \xrightarrow{\text{linear prefilter}} z[k] \xrightarrow{\text{Trellis-based equalizer}} \hat{x}[k] \]

- **Linear prefilter** that can be computed **efficiently** (with standard techniques available in the literature)
- **Standard** reduced-complexity **trellis-based equalizer** (not specifically designed for sparse ISI channels, since sparse CIR structure is normally lost after prefiltering)

⇒ Solely the linear prefilter is adjusted to the current CIR

Example: Minimum-phase filter (WMF) in conjunction with delayed decision-feedback sequence estimator (DDFSE)
Comparison with sub-P-BCJRA

Static CIR $h = [h_0 0 0 0 h_4 0 0 h_7 0 \ldots 0 h_{15}]^T$ (no zero-pad)

$h_0 = 0.87, h_4 = h_7 = h_{15} = 0.29$

Binary transmission; WMF with $L_F = 40$ filter taps;

DDFSE with memory length $K \ll L$
Comparison with sub-P-BCJRA

Static CIR \(\mathbf{h} = [h_0 \ 0 \ 0 \ 0 \ h_4 \ 0 \ 0 \ h_7 \ 0 \ldots 0 \ h_{15}]^T \) (no zero-pad)

\[h_0 = 0.87, \ h_4 = h_7 = h_{15} = 0.29 \]

Binary transmission; WMF with \(L_F = 40 \) filter taps;
DDFSE with memory length \(K \ll L \)

DDFSE \((K = 4) \) + WMF: Similar performance as sub-P-BCJRA
Comparison with sub-P-BCJRA

Static CIR $h = [h_0 \ 0 \ 0 \ 0 \ h_4 \ 0 \ 0 \ h_7 \ 0 \ldots \ 0 \ h_{15}]^T$ (no zero-pad)

$h_0 = 0.87$, $h_4 = h_7 = h_{15} = 0.29$

Binary transmission; WMF with $L_F = 40$ filter taps;

DDFSE with memory length $K \ll L$

Diagram:

- **DDFSE ($K=4$) + WMF:** Similar performance as sub-P-BCJRA
- **DDFSE ($K=3$) + WMF:** Reduced complexity at expense of small loss
Fading CIR with $h_g \sim \mathcal{CN}(0, \sigma_{h,g}^2)$ and power profile

$$p := [\sigma_{h,0}^2 \underbrace{0 \ldots 0}_{f \text{ zeros}} \sigma_{h,1}^2 0 0 0 \sigma_{h,2}^2 \sigma_{h,3}^2]^T, \quad \sigma_{h,g}^2 = 0.25$$
Fading CIR with $h_g \sim \mathcal{CN}(0, \sigma_{h,g}^2)$ and power profile

$$p := \left[\sigma_{h,0}^2 \underbrace{0 \ldots 0}_{f \text{ zeros}} \sigma_{h,1}^2 \ 0 \ 0 \ 0 \ \sigma_{h,2}^2 \ \sigma_{h,3}^2 \right]^T, \ \sigma_{h,g}^2 = 0.25$$

Memory length $L = 6$ ($K = 5$)
Fading CIR with $h_g \sim \mathcal{CN}(0, \sigma^2_{h,g})$ and power profile

$$p := \begin{bmatrix} \sigma^2_{h,0} & 0 \cdots 0 & \sigma^2_{h,1} & 0 & 0 & 0 & \sigma^2_{h,2} & \sigma^2_{h,3} \end{bmatrix}^T, \quad \sigma^2_{h,g} = 0.25$$

Memory length $L = 12$ ($K = 5$)
Fading CIR, Different Memory Lengths

Fading CIR with $h_g \sim \mathcal{CN}(0, \sigma_{h,g}^2)$ and power profile

$$p := [\sigma_{h,0}^2, 0 \ldots 0, \sigma_{h,1}^2, 0, 0, 0, \sigma_{h,2}^2, \sigma_{h,3}^2]^T, \quad \sigma_{h,g}^2 = 0.25$$

Memory length $L = 20 \ (K = 5)$
Fading CIR, Different Memory Lengths

Fading CIR with $h_g \sim \mathcal{CN}(0, \sigma_{h,g}^2)$ and power profile

$$p := [\sigma_{h,0}^2 \underbrace{0 \ldots 0}_{f \text{ zeros}} \sigma_{h,1}^2 0 0 0 \sigma_{h,2}^2 \sigma_{h,3}^2]^T, \quad \sigma_{h,g}^2 = 0.25$$

Memory length $L = 20$ ($K = 5$)

DDFSE with WMF deviates only 1-2 dB from the MFB (at BER 10^{-3}) even for a large memory length L

WMF makes huge difference
Conclusions

- Efficient equalization of **sparse** ISI channels at reasonable complexity is a **demanding task**
- **Optimal** trellis-based solutions are only applicable for zero-pad channels (factor graph)
- Existing **suboptimal** solutions explicitly exploit the sparse channel structure and seem impracticable for **fading** channels
- **Our approach:** Use linear prefilter in conjunction with standard reduced-complexity trellis-based equalizer
Conclusions

- Efficient equalization of sparse ISI channels at reasonable complexity is a demanding task
- Optimal trellis-based solutions are only applicable for zero-pad channels (factor graph)
- Existing suboptimal solutions explicitly exploit the sparse channel structure and seem impracticable for fading channels
- Our approach: Use linear prefilter in conjunction with standard reduced-complexity trellis-based equalizer

⇒ General sparse ISI channels can be tackled
⇒ Only the linear prefilter is adjusted to the current CIR
⇒ Performance close to the MFB