Outline

1. Capacity Bounds for Wideband Multipath Fading Channels
 - Basic Assumptions
 - Upper Bound on Capacity
 - Lower Bound on Capacity

2. Mutual Information Achieved by Spread-Spectrum Signaling
 - Motivation and Assumptions
 - Bounds on Mutual Information
 - Practical Implications
Outline

1. Capacity Bounds for Wideband Multipath Fading Channels
 - Basic Assumptions
 - Upper Bound on Capacity
 - Lower Bound on Capacity

2. Mutual Information Achieved by Spread-Spectrum Signaling
 - Motivation and Assumptions
 - Bounds on Mutual Information
 - Practical Implications
Basic Assumptions

- **Wideband multipath fading channel, bandwidth** W
 - Wideband: received power spread out over large bandwidth
 - Still narrowband in the sense $W \ll f_c$ (f_c: carrier frequency)

- Channel model:
 $$y(t) = \sum_{l=1}^{L} a_l(t) x(t - d_l(t)) + z(t)$$
 - $y(t)$: received waveform, $x(t)$: transmitted waveform, $z(t)$: AWGN
 - L: number of physical multipaths
 - $a_l(t)$: path amplitudes, constant during coherence time T_c, unknown at receiver
 - $d_l(t)$: path delays, slowly time-varying, perfectly known at receiver

- Capacity derivation:
 - Constraint on average received power $P \Rightarrow$ SNR $= P / N_0$
Basic Assumptions

- Wideband multipath fading channel, bandwidth W
 - Wideband: received power spread out over large bandwidth
 - Still narrowband in the sense $W \ll f_c$ (f_c: carrier frequency)

- Channel model:
 \[
 y(t) = \sum_{l=1}^{L} a_l(t) x(t - d_l(t)) + z(t)
 \]
 - $y(t)$: received waveform, $x(t)$: transmitted waveform, $z(t)$: AWGN
 - L: number of physical multipaths
 - $a_l(t)$: path amplitudes, constant during coherence time T_c, unknown at receiver
 - $d_l(t)$: path delays, slowly time-varying, perfectly known at receiver

- Capacity derivation:
 - Constraint on average received power $P \Rightarrow \text{SNR} = P / N_0$
Basic Assumptions

- Wideband multipath fading channel, bandwidth W
 - Wideband: received power spread out over large bandwidth
 - Still narrowband in the sense $W \ll f_c$ (f_c: carrier frequency)

Channel model:

$$y(t) = \sum_{l=1}^{L} a_l(t) x(t - d_l(t)) + z(t)$$

- $y(t)$: received waveform, $x(t)$: transmitted waveform, $z(t)$: AWGN
- L: number of physical multipaths
- $a_l(t)$: path amplitudes, constant during coherence time T_c, unknown at receiver
- $d_l(t)$: path delays, slowly time-varying, perfectly known at receiver

Capacity derivation:

- Constraint on average received power $P \Rightarrow \text{SNR} = P/N_0$
Basic Assumptions

- Wideband multipath fading channel, bandwidth W
 - Wideband: received power spread out over large bandwidth
 - Still narrowband in the sense $W \ll f_c$ (f_c: carrier frequency)

- Channel model:
 $$y(t) = \sum_{l=1}^{L} a_l(t) x(t - d_l(t)) + z(t)$$
 - $y(t)$: received waveform, $x(t)$: transmitted waveform, $z(t)$: AWGN
 - L: number of physical multipaths
 - $a_l(t)$: path amplitudes, constant during coherence time T_c, unknown at receiver
 - $d_l(t)$: path delays, slowly time-varying, perfectly known at receiver

- Capacity derivation:
 - Constraint on average received power $P \Rightarrow$ SNR = P/N_0
Capacity Bounds for Wideband Fading Channels II

Upper Bound on Capacity

- Capacity of infinite bandwidth fading channel with SNR P/N_0 and _perfect_ channel state information (CSI) at receiver:

\[C^* = \frac{P}{N_0} \]

- Wideband multipath fading channel: path amplitudes $a_i(t)$ _unknown_ at receiver \Rightarrow

\[C \leq C^* = \frac{P}{N_0} \]

- C^* corresponds to capacity of infinite bandwidth AWGN channel (non-fading, perfect CSI at receiver):

\[\lim_{W \to \infty} W \log \left(1 + \frac{P}{N_0 W} \right) \approx \lim_{W \to \infty} W \frac{P}{N_0 W} = \frac{P}{N_0} =: C_{AWGN} \]
Capacity Bounds for Wideband Fading Channels II

Upper Bound on Capacity

- Capacity of infinite bandwidth fading channel with SNR P/N_0 and *perfect* channel state information (CSI) at receiver:
 \[C^* = \frac{P}{N_0} \]

- Wideband multipath fading channel: path amplitudes $a_i(t)$ *unknown* at receiver \Rightarrow
 \[C \leq C^* = \frac{P}{N_0} \]

- C^* corresponds to capacity of infinite bandwidth AWGN channel (non-fading, perfect CSI at receiver):
 \[\lim_{W \to \infty} W \log \left(1 + \frac{P}{N_0 W}\right) \approx \lim_{W \to \infty} W \frac{P}{N_0 W} = \frac{P}{N_0} =: C_{AWGN} \]
Upper Bound on Capacity

- Capacity of infinite bandwidth fading channel with SNR P/N_0 and *perfect* channel state information (CSI) at receiver:
 \[
 C^* = \frac{P}{N_0}
 \]

- Wideband multipath fading channel: path amplitudes $a_l(t)$ *unknown* at receiver ⇒
 \[
 C \leq C^* = \frac{P}{N_0}
 \]

- C^* corresponds to capacity of infinite bandwidth AWGN channel (non-fading, perfect CSI at receiver):
 \[
 \lim_{W \to \infty} W \log \left(1 + \frac{P}{N_0 W} \right) \approx \lim_{W \to \infty} W \frac{P}{N_0 W} = \frac{P}{N_0} =: C_{AWGN}
 \]
Lower Bound on Capacity I

Design efficient signaling scheme and assess mutual information (MI)

- Choose symbol duration T_s such that $2T_d \leq T_s \leq T_c$ (T_d: delay spread, $T_d \ll T_c$ assumed)
- Convey message $m \in \{1, \ldots, M\}$ using signal

$$x_m(t) = \begin{cases} \sqrt{\lambda} \exp(j2\pi f_m t) & 0 \leq t \leq T_s \\ 0 & \text{else} \end{cases}$$

\Rightarrow Single sinusoid at frequency f_m ($\hat{=} \text{FSK scheme}$)

- Receiver correlates received signal against all possible $x_m(t)$, $m \in \{1, \ldots, M\}$ \Rightarrow non-coherent detection
- Choose frequencies as $f_m := n/(T_s - 2T_d)$ (n integer) to obtain orthogonal scheme
- Repeat transmission of $x_m(t)$ on N disjoint time intervals \Rightarrow receiver can average over fading
Design efficient signaling scheme and assess mutual information (MI)

- Choose symbol duration T_s such that $2T_d \leq T_s \leq T_c$ (T_d: delay spread, $T_d \ll T_c$ assumed)
- Convey message $m \in \{1, ..., M\}$ using signal

$$x_m(t) = \begin{cases} \sqrt{\lambda} \exp(j2\pi f_m t) & 0 \leq t \leq T_s \\ 0 & \text{else} \end{cases}$$

⇒ Single sinusoid at frequency f_m (≡ FSK scheme)

- Receiver correlates received signal against all possible $x_m(t)$, $m \in \{1, ..., M\}$ ⇒ non-coherent detection
- Choose frequencies as $f_m := n/(T_s - 2T_d)$ (n integer) to obtain orthogonal scheme
- Repeat transmission of $x_m(t)$ on N disjoint time intervals ⇒ receiver can average over fading
Design efficient signaling scheme and assess mutual information (MI)

1. Choose symbol duration T_s such that $2T_d \leq T_s \leq T_c$ (T_d: delay spread, $T_d \ll T_c$ assumed)

2. Convey message $m \in \{1, ..., M\}$ using signal

 $$x_m(t) = \begin{cases}
 \sqrt{\lambda} \exp(j2\pi f_m t) & 0 \leq t \leq T_s \\
 0 & \text{else}
 \end{cases}$$

 \Rightarrow Single sinusoid at frequency f_m (\approx FSK scheme)

3. Receiver correlates received signal against all possible $x_m(t)$, $m \in \{1, ..., M\}$ \Rightarrow non-coherent detection

4. Choose frequencies as $f_m := n/(T_s - 2T_d)$ (n integer) to obtain orthogonal scheme

5. Repeat transmission of $x_m(t)$ on N disjoint time intervals \Rightarrow receiver can average over fading
Lower Bound on Capacity II

- Using *low duty cycle* above scheme achieves mutual information (MI):

\[
I(x; y|d_i) = \left(1 - 2 \frac{T_d}{T_c}\right) \frac{P}{N_0}
\]

Due to *average* power constraint we have \(\lambda := P/\theta \gg P \) \((\theta \to 0)\)

- Altogether:

\[
\left(1 - 2 \frac{T_d}{T_c}\right) C_{\text{AWGN}} \leq C \leq C_{\text{AWGN}}
\]

\((C_{\text{AWGN}} = P/N_0)\)

- Since \(T_d \ll T_c \), lower and upper bound approximately *coincide*

- Capacity-achieving signaling is “peaky” in time and frequency domain
Lower Bound on Capacity II

- Using *low duty cycle* above scheme achieves MI
 \[I(x; y|d_i) = \left(1 - 2 \frac{T_d}{T_c} \right) \frac{P}{N_0} \]

Due to *average* power constraint we have \(\lambda := \frac{P}{\theta} \gg P \) (\(\theta \to 0 \))

- Altogether:
 \[\left(1 - 2 \frac{T_d}{T_c} \right) C_{AWGN} \leq C \leq C_{AWGN} \]

(\(C_{AWGN} = \frac{P}{N_0} \))

- Since \(T_d \ll T_c \), lower and upper bound approximately *coincide*
- Capacity-achieving signaling is “peaky” in time and frequency domain
Capacity Bounds for Wideband Fading Channels

\[0 \leq t \leq T_s \]

\[T_s < t < T_I \]

\[\theta = \frac{T_s}{T_I} \rightarrow 0 \]
Capacity Bounds for Wideband Multipath Fading Channels
- Basic Assumptions
- Upper Bound on Capacity
- Lower Bound on Capacity

Mutual Information Achieved by Spread-Spectrum Signaling
- Motivation and Assumptions
- Bounds on Mutual Information
- Practical Implications
Spread-spectrum (SS) schemes (DS-CDMA, code-spread CDMA, ...) commonly used for communication over wideband channels.

Key result
- Capacity-achieving signaling for wideband multipath fading channels *maximal different* from SS signaling
 - ⇒ SS signals are “white-like” and non-peaky in time

Question
- How good is SS signaling for wideband multipath fading channels?
Spread-spectrum (SS) schemes (DS-CDMA, code-spread CDMA, ...) commonly used for communication over wideband channels

Key result
- Capacity-achieving signaling for wideband multipath fading channels *maximal different* from SS signaling
 - SS signals are “white-like” and non-peaky in time

Question
- How good is SS signaling for wideband multipath fading channels?
Assumptions

- Discrete-time channel model:

\[Y_i = \sqrt{\frac{\mathcal{E}}{K_c}} \sum_{l=1}^{\tilde{L}} G_l X_{(i-D_l)} + Z_i \]

- \(Y_i \): received sample, \(X_i \): transmitted symbol, \(Z_i \): AWGN sample
- \(\tilde{L} \): number of resolvable multipaths at system bandwidth \(W \) \((\tilde{L} \leq L)\)
- \(G_l, D_l \): amplitudes/delays of resolvable multipaths
- \(\mathcal{E} := PT_c/N_0 \), \(K_c \) normalization factor

- Two different notions of “white-like” signals
 - info symbols modulated on pseudo-random spreading sequences with near-perfect auto-correlation (\(\hat{=} \) DS-CDMA)
 - info symbols spread onto wide bandwidth using low-rate FEC (\(\hat{=} \) code-spread CDMA)
MI bounds for Spread-Spectrum Signaling II

Assumptions

- **Discrete-time channel model:**

 \[Y_i = \sqrt{\frac{\mathcal{E}}{K_c}} \tilde{L} \sum_{l=1}^{\tilde{L}} G_l X_{(i-D_l)} + Z_i \]

 - \(Y_i \): received sample, \(X_i \): transmitted symbol, \(Z_i \): AWGN sample
 - \(\tilde{L} \): number of *resolvable* multipaths at system bandwidth \(\mathcal{W} \) (\(\tilde{L} \leq L \))
 - \(G_l, D_l \): amplitudes/delays of resolvable multipaths
 - \(\mathcal{E} := P T_c / N_0 \), \(K_c \) normalization factor

- **Two different notions of “white-like” signals**
 - info symbols modulated on pseudo-random spreading sequences with near-perfect auto-correlation (\(\wedge \) DS-CDMA)
 - info symbols spread onto wide bandwidth using low-rate FEC (\(\wedge \) code-spread CDMA)
Upper bound on MI per unit time (holds for large W and large \tilde{L}; equal average path energies assumed):

$$I(X; Y|D_l) \leq \frac{\mathcal{E}^2}{T_c^2 \tilde{L}}$$

Lower bound on MI per unit time (holds for large W and any \tilde{L}):

$$I(X; Y|D_l) \geq \frac{\mathcal{E}}{T_c} - \frac{\tilde{L}}{T_c} \log \left(1 + \frac{\mathcal{E}}{\tilde{L}}\right)$$

- If $\tilde{L} \ll \mathcal{E}$, lower bound close to $\mathcal{E}/T_c = P/N_0 = C_{AWGN}$, i.e., SS signaling near-optimal
- If $\tilde{L} \gg \mathcal{E}$, upper bound holds and is close to zero, i.e., SS signaling highly suboptimal (!)

$\Rightarrow \mathcal{E} =: \tilde{L}_{\text{crit}}$ critical system parameter indicating overspreading
Bounds on MI

- Upper bound on MI per unit time (holds for large W and large \tilde{L}; equal average path energies assumed):

\[
I(X; Y|D_l) \leq \frac{\epsilon^2}{T_c^2 \tilde{L}}
\]

- Lower bound on MI per unit time (holds for large W and any \tilde{L}):

\[
I(X; Y|D_l) \geq \frac{\epsilon}{T_c} - \frac{\tilde{L}}{T_c} \log \left(1 + \frac{\epsilon}{\tilde{L}}\right)
\]

- If $\tilde{L} \ll \epsilon$, lower bound close to $\epsilon / T_c = P / N_0 = C_{AWGN}$, i.e., SS signaling near-optimal

- If $\tilde{L} \gg \epsilon$, upper bound holds and is close to zero, i.e., SS signaling highly suboptimal (!)

$\Rightarrow \epsilon =: \tilde{L}_{\text{crit}}$ critical system parameter indicating overspreading
Bounds on MI

- Upper bound on MI per unit time (holds for large W and large \tilde{L}; equal average path energies assumed):

$$I(X; Y|D_l) \leq \frac{\mathcal{E}^2}{T_c^2 \tilde{L}}$$

- Lower bound on MI per unit time (holds for large W and any \tilde{L}):

$$I(X; Y|D_l) \geq \frac{\mathcal{E}}{T_c} - \frac{\tilde{L}}{T_c} \log \left(1 + \frac{\mathcal{E}}{\tilde{L}}\right)$$

- If $\tilde{L} \ll \mathcal{E}$, lower bound close to $\mathcal{E} / T_c = P / N_0 = C_{\text{AWGN}}$, i.e., SS signaling near-optimal

- If $\tilde{L} \gg \mathcal{E}$, upper bound holds and is close to zero, i.e., SS signaling highly suboptimal (!!)

$\Rightarrow \mathcal{E} =: \tilde{L}_{\text{crit}}$ critical system parameter indicating overspreading
Critical Parameter \tilde{L}_{crit}

- Critical parameter also plays *key role* for detection error probability of (specific) binary orthogonal modulation schemes ($W \to \infty$)

- Interpretation of case $\tilde{L} \gg \tilde{L}_{\text{crit}}$:
 - \Rightarrow energies of resolvable paths very small
 - \Rightarrow poor estimates of complex gains
 - \Rightarrow effective multipath combining at the receiver *difficult*

Question

- How good are DS-UWB systems?
Critical Parameter \tilde{L}_{crit}

- Critical parameter also plays *key role* for detection error probability of (specific) binary orthogonal modulation schemes ($W \rightarrow \infty$)

- Interpretation of case $\tilde{L} \gg \tilde{L}_{\text{crit}}$:
 - \Rightarrow energies of resolvable paths very small
 - \Rightarrow poor estimates of complex gains
 - \Rightarrow effective multipath combining at the receiver *difficult*

Question

- How good are DS-UWB systems?