CTG Reading Group
Electrical and Computer Engineering

Anand Oka (Ph.D. Candidate)
29 February 2008
Outline

• Motivation

Questions that this paper answers:
• What is Compressed Sensing?
• How does it work? (answer is easy)
• Why does it work? (answer is subtle)
• Some revolutionary applications
Motivation

• Consider example of a digital camera ...
• Tens of mega-pixels of raw data is sampled. Then transform coded to say 10 kilo-pixels. Thus most of the raw data is “thrown out” ...
• The optimal transform depends on type of scene.
• What if we directly measure relevant linear functionals, perhaps via analog processing? Bonus: make the transform universal!
• Result: extremely sensitive SINGLE-PIXEL camera!
What is CS?

• An efficient way to encode and reconstruct sparse signals.

• Universal Encoder! Only the decoder needs to know the sparsity basis.

• Reconstruction algorithm is tractable.

• Robust to erasures or errors in encoded data.
How does it work?

$\mathcal{F} \subset \mathbb{R}^N$ is said to be a sparse family with sparsity $|T|$ in the basis formed by the columns of an $N \times N$ orthonormal matrix Φ if

$$\forall f \in \mathcal{F}, \|\Phi^T f\|_0 = |T|.$$

Let F_Ω be a $K \times N$ random measurement matrix with i.i.d entries with bounded variance, say $\mathcal{N}(0, 1/N)$.

Let K measurements be obtained for a generic $f \in \mathcal{F}$ as $y = F_\Omega f$.

Let the reconstruction be made by the *basis pursuit* linear program:

$$\hat{f} = \arg \min_{g : F_\Omega g = y} \|\Phi^T g\|_1$$
Guarantees

If

\[|T| \leq \alpha \frac{K}{\log N} \]

where \(\alpha \) is a positive constant independent of \(f \), then

\[\hat{f} = f \]

with probability \(1 - O(N^{-\rho/\alpha}) \), where \(\rho > 0 \) is a universal constant.

Paraphrase: With a small oversampling factor we can achieve exact reconstruction with high probability.
What if strict sparsity is not satisfied by signals?

Suppose signals satisfy a power low decay

\[|(\Phi^T f)_n| \leq R n^{-1/p} \]

where \(R, p \) are some positive parameters.

Then with probability \(1 - O(N^{-\rho/\alpha}) \) the reconstruction MSE satisfies

\[\|f - \hat{f}\|_2 \leq C_{p,\alpha} R \left(\frac{K}{\log N} \right)^{-r} \]

where \(r = 1/p - 1/2 \).

Paraphrase: With a small oversampling factor the MSE decays just as in transform coding.
How does it work? Heuristics ...

• Close analogy to the technique of holography.
• Main requirement: sparsity basis should be incoherent w.r.t. the measurement ensemble. (That's weird!)
• The energy of each sparsity basis element should be more or less evenly distributed in all linear measurement functionals.
• CS works because a random measurement ensemble is universally decoherent w.r.t. any sparsity basis.
Recall *uncertainty principle* from signal processing: A signal with a small support in time must necessarily have a wide frequency support. While this holds *automatically* for time-frequency, we can *axiomatize* this property:

\[F_\Omega \] is said to satisfy the **Uniform Uncertainty Principle** if, with probability \(1 - O(N^{-\rho/\alpha}) \),

\[
|T| \leq \alpha \frac{K}{\lambda} \implies \frac{1}{2} \frac{K}{N} \leq \lambda_{\text{min}}(F_\Omega F_\Omega^T) \leq \lambda_{\text{max}}(F_\Omega F_\Omega^T) \leq \frac{3}{2} \frac{K}{N}
\]
Another related axiom is the Exact Reconstruction Property (ERP). In some cases, but not always, ERP is implied by UUP.

Paraphrase of Theorem 1.2: CS “works” (in the sense described earlier) for signal families with power law decay provided the measurement ensemble satisfies the UUP and ERP properties.

So remaining job is to prove that a random ensemble does satisfy UUP and ERP.
The good news (Lemma 4.1-4.3): Random ensembles (Gaussian, binary and others) do satisfy UUP for any sparsity basis.

Reason: Marchenko-Pastur law

The limiting density (as $K \to \infty$, $K/N \to \beta$) of eigenvalues of a $K \times K$ S.P.D. matrix $F_\Omega F_\Omega^T$, where entries of the $K \times N$ random matrix F_Ω are i.i.d. with variance $1/N$, is given by

$$f_\beta(x) = \frac{\sqrt{(x-a)(b-x)}}{2\pi x}$$

on support $[a, b]$ and is identically zero elsewhere, where $a = (1-\sqrt{\beta})^2$ and $a = (1+\sqrt{\beta})^2$.

Discussion: Candes-Tao’06
anando@ece.ubc.ca
Some interesting open questions ...

• Will UUP and ERP hold for carefully selected non-random (deterministic) measurement ensembles?
• Will dependencies in ensemble be catastrophic?
• How much can the oversampling factor be reduced if we have knowledge of the locations of sparse entries?
• Most important: What is the relation of CS to information theoretic source compression? What about fountain encoders?
• Most important: Can we prove uniform robustness to errors/erasures of measurements?
Some revolutionary applications

• Extremely Sensitive but universal imaging and detection, e.g. in medicine, astromomy etc (By hugely reducing number of sensors, we can make each sensor ultra sensitive.)

• Data extraction from Wireless Sensor Networks

• Universal and Encrypted compression

• Reliable Micro Array Analysis of gene expression
Prominent researchers ...

- Candes, Tao, Romberg (Caltech, UCLA)
- Donoho (Stanford)
- Baranuik (Rice)
- Also many from EE and IT field, e.g. Tarokh (Harvard)

Thank You ...!