Altium II
(PCB Layout)

ELEC391
Spring 2017
PCB Design support for ELEC391:

Altium 2016, 150 licenses

Lecture talks:
• Jan 30 Altium I (Design Capture + Simulation)
• Feb 6 Altium II (PCB Layout)
• Mar 13 Guest Lecture – PCB Production
• Support & submission instructions posted here

Mechanical and PCB design support available 2hrs per lab session, rooms MCLD315,306
 Mon: 13:00-15:00 / 16:00-18:00
 Tue : 09:00-11:00 / 12:00-14:00 / 16:00-18:00
 Wed: 13:00-15:00 / 16:00-18:00
 Tue : 09:00-11:00 / 12:00-14:00 / 16:00-18:00
Contents

• PCB design flow & PCB layers
• Walk-through tutorial, simple PCB
• Instructions for elec391 fab submissions
• PCB design best practices
• Anatomy of a PCB
 – Traces, pads, vias, layers etc.
PCB Basic Design Flow

- Symbol and Footprint creation
- Auto place
- Auto route ...

Schematic entry

PCB Layout

- Gerber: 274X
 - Top, Bottom Cu
 - Top, Bottom Solder
 - Silkscreen
 - Mechanical 1
- Drill files (tool list)

CAM files
2 starting points for PCB design

1. From a companion schematic package
 - Prepare project schematics
 - Import schematic design
 - Component footprints are added automatically
 - Connectivity is indicated with rats nests
 - Net names are imported from the schematic

2. Directly from the PCB editor
 - You need to select and place manually each component footprint from a library
 - No rats nest – connectivity
 - You must assign nets manually (at least GND)
PCBs are multi-layered entities
Same PCB:
Configuring the Display Layers

- Design » Board Layers and Colors
Configuring the Display Layers

- **Electrical layers**
 32 signal layers and 16 internal power plane layers.

- **Mechanical layers**
 32 general purpose mechanical layers, used for design tasks such as dimensions, fabrication details, assembly instructions, or special purpose tasks such as glue dot layers. These layers can be selectively included in print and Gerber output generation. They can also be paired, meaning that objects placed on one of the paired layers in the library editor, will flip to the other layer in the pair when the component is flipped to the bottom side of the board.

- **Special layers**
 these include the top and bottom silkscreen layers, the solder and paste mask layers, drill layers, the Keep-Out layer (used to define the electrical boundaries), the multilayer (used for multilayer pads and vias), the connection layer, DRC error layer, grid layers, hole layers, and other display-type layers.
Thru-hole pads & vias are plated

Plating reduces hole size by 0.003”
You must specify if using
1) Plated hole sizes
2) Non plated hole sizes

Not all holes need to be plated

http://hobbygenius.co.uk/tutorials/pcbdesign/1510

Cross section report for a 2 sided PCB
Board Implementation
Tutorial - Getting Started with PCB Design
http://techdocs.altium.com/display/ADOH/Board+Implementation
Creating a New Board from a template

- Files Panel:
 - New from template
 - select the A4.PcbDoc template
 - Save as … same name and directory as SchDoc file
First things first … choosing working units

- **Imperial (inches)**
 - \(1/1000^{\text{th}}\) of an inch = 1 mil = 1 thou
 - 100mils (0.1”) is a common dimension

- **Metric (mm)**
 - 1 mm ≠ 1mil!
 - Common unit in SM parts

- Remember: 100mils = 2.54mm
- To switch units in Altium Press <Q>
Metric or Imperial?

"every element in a PCB design should reside on a 0.05mm grid" (or a multiple of).

Tom Hausherr
EDA Library Product Manager,
Menthor Graphics

Old PCB wisdom: “thou shall use thous”
David L. Jones
EEV blog

Comment driven by high density & modern surface mount technology
Comment driven by traditional 0.1” spacing between pins
First things first … setting the board origin

- Absolute origin (lower left corner)
- User-defined relative origin
 - Edit >> Origin >> Set
First things first … setting the snap grid

- PCBs are grid based objects

Unified Cursor-Snap System

- Selecting a suitable snap grid:
 - `<Ctrl>+<G>`
 - Start with a coarse grid to define board size
First things first … redefining the board shape

- Viewing modes:
 - Board Planning Mode (1)
 - Design » Edit Board Shape (resize to 1.5” x 1.5”)
 - Design >> Move Board Shape (Relocate the origin)
 - 2D Layout Mode (2)
 - 3D Layout Mode (3).
Design transfer

• Make the PCB board part of the project

• Rename the file

• Save the PcbDoc file and the project
Design transfer

• Design transfer
 – On Schematic file
 • Design >> Update PCB Document …
Design transfer

All parts in the schematic with their selected footprints

Rat’s nests indicate connectivity as per schematic (Net names are assigned to part terminals)
Component positioning and placement options

- Tools >> Preferences

```
<table>
<thead>
<tr>
<th>PCB Editor – General</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Editing Options</strong></td>
</tr>
<tr>
<td>✔ Online DRC</td>
</tr>
<tr>
<td>✔ Snap To Center</td>
</tr>
<tr>
<td>✔ Smart Component Snap</td>
</tr>
<tr>
<td>✔ Snap To Room Hot Spots</td>
</tr>
<tr>
<td>✔ Double Click Runs Inspector</td>
</tr>
</tbody>
</table>
```

```
<table>
<thead>
<tr>
<th><strong>Autopan Options</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Style</strong></td>
</tr>
<tr>
<td><strong>Speed</strong></td>
</tr>
</tbody>
</table>

  - **Snap To Center**: When you “grab” a component to position it, the cursor will hold the component by its reference point.
  - **Smart Component Snap**: Force the software to snap to a pad center instead of the reference point.

*Words of wisdom:* These are very useful!
Component positioning and placement options

- Tools >> Preferences

![PCB Editor - Interactive Routing](image)
Positioning components & routing

Change C2 & C1 footprints from RAD-0.3 to RAD-0.1
Rotate & align resistors: Edit >> Align
Handy shortcuts for routing

• Press * on the numeric keypad while routing to cycle through the available signal layers. A via will automatically be added, in accordance with the applicable Routing Via Style design rule. Alternatively, use Ctrl+Shift+Roll shortcuts to move back and forth through the available signal layers.

• Shift+R to cycle through the enabled conflict resolution modes, including Push, Walkaround, Hug and Push, and Ignore. Enable the required modes in the PCB Editor - Interactive Routing page of the Preferences dialog.

• Shift+S to cycle single layer mode on and off, ideal when there are many objects on multiple layers.

• Spacebar to toggle the corner direction (for all but any angle mode).

• Shift+Spacebar to cycle through the various track corner modes. The styles are: any angle, 45°, 45° with arc, 90° and 90° with arc. There is an option to limit this to 45° and 90° in the PCB Editor - Interactive Routing page of the Preferences dialog.
Auto route

• Tools » Un-Route » All
• Auto Route » All

• You can set single layer routing
## Design Rules

- **Design >> Rules**

<table>
<thead>
<tr>
<th>Rule</th>
<th>Constrain</th>
<th>Query</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrical, Clearance</td>
<td>Min clearance = 10mil</td>
<td>All</td>
</tr>
<tr>
<td>Routing, Width*</td>
<td>Min width = 7mils</td>
<td>All</td>
</tr>
<tr>
<td></td>
<td>Max width = 50mils</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Preferred = 10mils</td>
<td></td>
</tr>
<tr>
<td>Routing, Width_Power</td>
<td>Min width = 7mils</td>
<td>Advanced (Query)</td>
</tr>
<tr>
<td></td>
<td>Max width = 60mils</td>
<td>(InNet('12V') OR InNet('GND'))</td>
</tr>
<tr>
<td>(see next slide)</td>
<td>Preferred = 40mils</td>
<td></td>
</tr>
</tbody>
</table>

These rule settings are just for this example, elec391 rules are described ahead.
Custom Routing design rules

Rename to “Width_power’  Use ‘Custom Query’ to set
Belongs to net 12V OR
Belongs to net GND

Set rule execution priority
ELEC 391
Altium PCB
Design Rules

Andy
Submission Instructions

• Every group is entitled to three submissions
• Cost: $25 + $10/ sq-in, from project budget
• Submission dates:
  Midnight, every Monday until March 13
  we will check submissions and accept fixes
  until Tuesday 5PM
• Turn around: 5-6 business days
• Work within the given guidelines
• Verify PCB layout and design - prior to design submission
• Submissions will be rejected if guidelines are not followed
We will panelize your designs to speed up fabrication and reduce costs.
Submission Instructions

• Email pcb@ece.ubc.ca
  Subject: [PCB] ELEC391, Group Section #, submission# (out of 3)

• Attach: Zipped file with your PCB Project file (*.PrjPcb) and all associated files, also include the latest DRC report. (make sure all files are under the same directory)

Body:
Total number of boards to fabricate:
Name of boards to fabricate and number of copies for each

• You can send several different boards per submission. You can request up to 2 copies of each.
Design constrains

1) Layers:
   1) Maximum number of electrical layers = 2
   2) Bottom overlay (PCB underside text) will not be manufactured - please use "bottom layer" for bottom text

2) Try to minimize the size of your PCB
   Components can be placed side by side (recommend 50-100 mil IC's separation for most cases

3) Do not forget to:
   Add your group number on the top overlay – make it visible
   Draw a board outline on Mechanical 1
   if several boards in a single file, draw a board outline for each
   (min spacing from edge of board for any feature is 10mils)
4) Use latest version of course component library available [here](http://www.ece.ubc.ca/~eng-services/files/courses/elec391-spring2017/pcb-design/)

5) Using other libraries
If you do, make sure parts will pass Design-Rule-Checking
These two Altium libraries contain useful parts:
- Miscellaneous Devices.IntLib
- Miscellaneous Connectors.IntLib

6) Install provided Design-Rules file - please do not modify base rules, but you can add custom routing rules.
Submission that do not pass DRC will be rejected
Rules and Checks
• DRC file available [here](http://www.ece.ubc.ca/~eng-services/files/courses/elec391-spring2017/pcb-design/)

• Download and save as “.RUL” file

• On your PCB design select:
  Design >> Rules

• On the 'PCB Rules and Constrains Editor', Right click anywhere on the left column
  – Select: Import Rules
  – Select all rules in window (using shift and mouse) → OK
  – Browse to select .RUL file
  – Clear existing rules prior to import? → NO
Rules – design rules

• Component clearance and (electrical) clearance:
  – Minimum distance = 7 mil

• (Routing) width:
  – Minimum trace width = 7 mil

• Annular ring size:
  – Minimum annular ring size = 7 mil
  – Minimum annular ring size for vias = 5 mil

• Board outline clearance: 10mils

• Limited set of allowed hole sizes
### Rules – hole sizes

- Pre-selected hole and drill sizes: non-plated vs. plated sizes

<table>
<thead>
<tr>
<th>Drill Number Set</th>
<th>Drill Size</th>
<th>Finished Size</th>
<th>Approximate Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>#76</td>
<td>.020&quot;</td>
<td>.017&quot;</td>
<td>via holes</td>
</tr>
<tr>
<td>#70</td>
<td>.028&quot;</td>
<td>.025&quot;</td>
<td>via holes, fine lead devices such as trim pots etc.</td>
</tr>
<tr>
<td>#65</td>
<td>.035&quot;</td>
<td>.032&quot;</td>
<td>IC's, 1/4 watt resistors, small diodes, ripple caps etc.</td>
</tr>
<tr>
<td>#62</td>
<td>.038&quot;</td>
<td>.035&quot;</td>
<td>Square posted pins that measure .025&quot; on the flat.</td>
</tr>
<tr>
<td>#58</td>
<td>.042&quot;</td>
<td>.039&quot;</td>
<td>TO-220 packages, IDC type square posted headers, 1/2 watt resistors, 1N9000 series diodes, IC chip carriers, etc.</td>
</tr>
<tr>
<td>#55</td>
<td>.052&quot;</td>
<td>.049&quot;</td>
<td>larger connectors, transformer leads, etc.</td>
</tr>
<tr>
<td>#53</td>
<td>.060&quot;</td>
<td>.057&quot;</td>
<td>similar to .052&quot; above</td>
</tr>
<tr>
<td>#44</td>
<td>.086&quot;</td>
<td>.083&quot;</td>
<td>TO-220 mounting holes, screw holes, general mounting</td>
</tr>
<tr>
<td>1/8 in.</td>
<td>.125&quot;</td>
<td>.122&quot;</td>
<td>mounting holes</td>
</tr>
<tr>
<td>#24</td>
<td>.152&quot;</td>
<td>.149&quot;</td>
<td>mounting holes</td>
</tr>
</tbody>
</table>
PCB Hole Size Editor
Best Practices: Estimating board size

• Before starting layout it is good to have an idea of the target size of the PCB board and all other relevant dimensions.

• It is very helpful to have the components at hand to plan the floor-plan.

• An old good trick of the trade is to print the PCB layout at a 1:1 scale, place the printout on a foam and stick on the through hole components.
Best Practices: Floor planning

• Choose your units and set the grid
• Carefully plan the placement of components
  – Place analog and digital sections apart
  – Group components into ‘functional blocks’
  – Place ICs in the same direction
  – Align ICs, resistors, labels, capacitors etc.
  – Place decaps close by their ICs
  – Place Op-amp resistors near the Op-amp
  – Plan for mounting holes and heat sinks
• Aim for symmetry when possible
• Do use Design Rule check

Background: Apple Macintosh PCB from http://www.digibarn.com/collections
Best Practices: Routing strategy

- On two sided boards keep traces perpendicular as much as possible
- Avoid 90 degree bends in tracks (?) (reduced chances of acid traps)
- Keep traces as short as possible
- Always connect a trace to the center of the pad
- Use teardrops (Tools >> tear drops), and use vias to avoid lockout
- Do not place vias under SMD pads
- Layout first all critical traces
  e.g. CLK, diff pairs, controlled length
- Polygons as fills:
  Connect to GND (EMC), or do not leave ‘dead copper’
- Rout nicely

[Ref 3]
Best Practices: Labelling

• Always sign your design: add date, version, and name of board

• Label all relevant inputs and outputs

• Default sizes for comments and designators are 60mils x 10mils

• If you have silkscreen on both sides add a 'TOP' label to the top overlay.
Best Practices: Finishing touches

• Add mounting holes
• Run: Reports >> Board Information
  – Board specification → to confirm board size
  – Non-plated hole size
  – Plated hole size
• Using the hole size editor:
  – Minimize the total number of holes sizes
  – Verify that all vias are the same size (if possible)
• Verify that there are no unwanted leftovers on any Mechanical layer
Online resources

1. Ten best practices of PCB design – EDN Magazine, Edwin Robledo & Mark Toth

2. Circuit Board Layout Techniques – Texas Instruments, Chapter 17 of Op-amps for everyone

3. PCB Design Tutorial – David L. Jones
Anatomy of a PCB

PCB Anatomy: Substrate

- **Substrate (laminate)**
  - Rigid board of insulating material
  - Provides structural support to the circuit components
  - Most commonly used material type is FR4, 62-63mils thick
  - Laminates are available in different thicknesses

![Figure 1-2 A double-sided copper clad FR4 substrate.](image1)

![Figure 1-3 Cores and prepreg.](image2)

Cu thickness measured in weight oz/ft²
- ½ oz → 0.7mils
- 1 oz → 1.4mils
- 2 oz → 2.8mils

1mil = 25μm
PCB Anatomy: Layer Stackup

Design >> Layer Stack Manager ...

Layer Stack Manager

<table>
<thead>
<tr>
<th>Layer Name</th>
<th>Type</th>
<th>Material</th>
<th>Thickness (mil)</th>
<th>Dielectric Material</th>
<th>Dielectric Constant</th>
<th>Pullback (mil)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Top Overlay</td>
<td>Overlay</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Top Solder</td>
<td>Solder Mask/Cu</td>
<td>Surface Material</td>
<td>0.4</td>
<td>Solder Resist</td>
<td>3.5</td>
<td></td>
</tr>
<tr>
<td>Top Layer</td>
<td>Signal</td>
<td>Copper</td>
<td>1.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Dielectric1</strong></td>
<td><strong>Dielectric</strong></td>
<td>None</td>
<td>62</td>
<td>FR-4</td>
<td>4.8</td>
<td></td>
</tr>
<tr>
<td>Bottom Layer</td>
<td>Signal</td>
<td>Copper</td>
<td>1.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bottom Solder</td>
<td>Solder Mask/Cu</td>
<td>Surface Material</td>
<td>0.4</td>
<td>Solder Resist</td>
<td>3.5</td>
<td></td>
</tr>
<tr>
<td>Bottom Overlay</td>
<td>Overlay</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total Thickness: 85.6mil

Advanced >>

OK Cancel
PCB Anatomy: Traces / Tracks

- Copper traces are patterned either by:
  - Photolithography: requires photomasks
  - Laser: used to draw patterns on photoresist
  - Mechanical milling: Cu is removed to isolate the traces.

- Trace width and thickness determines:
  - Ampacity (current carrying capacity)
  - Characteristic impedance for RF designs

- Practical limitations:
  - Minimum trace width and gap

Negative view: Copper planes, Drill holes, Solder Masks

Figure 1-11 Copper pad and trace after etching and resist stripping.

Figure 1-12 A mechanically milled trace.
PCB Anatomy: Trace width

Use the following online trace width calculator:
http://circuitcalculator.com/wordpress/2006/01/31/pcb-trace-width-calculator
Connection between layers is accomplished with via holes. After the holes are drilled, their inner walls are plated. Top and bottom traces are patterned after plating.

Thermal relief is needed when connecting a via to a copper plane.

PWR and GND planes are commonly inner layers.

Teardrops:
PCB Anatomy: Vias

- Types of via holes:
  - Plated and un-plated through-hole, blind, buried

*Figure 1-5 A built-up, multitechnology, PCB stack-up.*
PCB Anatomy: Holes

Holes can be:

- Vias, multi-layer pads, mounting holes, or cuts
- Plated or non plated

![Images of plated and non-plated holes with and without pads]

You must specify whether a hole is plated or non-plated during the design process.

Table 8-2 Basic hole types
PCB Anatomy: Pads

- Pads: contact areas for soldering components, test points, and solder traps
- Pads can have any shape
- Single layer pads: Top/bottom layer, common for SMT, end launch connectors
- Multi-layer pads: for through hole components
- Footprints are a collection of pads
PCB Anatomy: Solder mask

• Solder mask or solder resist:
  – Thin polymer layer deposited on top and bottom layers
  – Protects outer layers from oxidation and prevents solder bridges
  – Allows for wave or reflow soldering of components
  – Holes are opened with photolithography wherever components will be soldered
  – Default color is green, but any other color is possible

Ref [B1]

Source: Printed Circuit Board Basics: An Introduction to the PCB Industry, by: Michael Flatt
PCB Anatomy: Legend / Silkscreen / Overlay

- Legend or silkscreen:
  - Applied on top of the solder resist
  - Can be applied to one or both outer layers
  - Default color is white but any other color is possible

Tip: add (Top) and (Bottom)

Figure 1-16 Final layers are the soldermask (green) and silk screen (white).
PCB Anatomy: Solder coat / thinning

- Solder coated + solder mask
- Bare copper, no solder mask
- Solder coated + no solder mask
PCB Anatomy: Mechanical Layers

- Multi-purpose layers
- E.g. Altium supports 32 Mechanical layers: M1 … M32
- Typically
  - M1 Board outline
  - M2 PCB manufacturing info
  - M11-M12 Top and bottom layer dimensions
  - M13 Top layer 3D models and mechanical outlines
  - M14 Bottom layer 3D models and mechanical outlines
  - M15 Top layer assembly information
  - M16 Bottom layer assembly information