
JavaScript: The (Un)covered Parts
Amin Milani Fard

University of British Columbia
Vancouver, BC, Canada

aminmf@ece.ubc.ca

Ali Mesbah
University of British Columbia

Vancouver, BC, Canada
amesbah@ece.ubc.ca

Abstract—Testing JavaScript code is important. JavaScript has
grown to be among the most popular programming languages
and it is extensively used to create web applications both on
the client and server. We present the first empirical study of
JavaScript tests to characterize their prevalence, quality metrics
(e.g. code coverage), and shortcomings. We perform our study
across a representative corpus of 373 JavaScript projects, with
over 5.4 million lines of JavaScript code. Our results show
that 22% of the studied subjects do not have test code. About
40% of projects with JavaScript at client-side do not have a
test, while this is only about 3% for the purely server-side
JavaScript projects. Also tests for server-side code have high
quality (in terms of code coverage, test code ratio, test commit
ratio, and average number of assertions per test), while tests for
client-side code have moderate to low quality. In general, tests
written in Mocha, Tape, Tap, and Nodeunit frameworks have
high quality and those written without using any framework
have low quality. We scrutinize the (un)covered parts of the
code under test to find out root causes for the uncovered code.
Our results show that JavaScript tests lack proper coverage for
event-dependent callbacks (36%), asynchronous callbacks (53%),
and DOM-related code (63%). We believe that it is worthwhile
for the developer and research community to focus on testing
techniques and tools to achieve better coverage for difficult to
cover JavaScript code.

Keywords-JavaScript applications; testing; empirical study;
test quality; code coverage.

I. INTRODUCTION

JavaScript is currently the most widely used program-
ming language according to a recent survey of more than
56K developers conducted by Stack Overflow [43], and
also exploration of the programming languages used across
GitHub repositories [22]. JavaScript is extensively used to
build responsive modern web applications, and is also used to
create desktop and mobile applications, as well as server-side
network programs. Consequently, testing JavaScript applica-
tions and modules is important. However, JavaScript is quite
challenging to test and analyze due to some of its specific
features. For instance, the complex and dynamic interactions
between JavaScript and the Document Object Model (DOM),
makes it hard for developers to test effectively [32], [29], [19].

To assist developers with writing tests, there exist number
of JavaScript unit testing frameworks, such as Mocha [6],
Jasmine[4], QUnit [9], and Nodeunit [8], each having its own
advantages [10]. Also the research community have proposed
some automated testing tools and test generation techniques
for JavaScript programs [33], [29], [32], [19], [23], though
they are not considerably used by testers and developers yet.

Some JavaScript features, such as DOM interactions, event-
dependent callbacks, asynchronous callbacks, and closures

(hidden scopes), are considered to be harder to test [1], [2],
[12], [11], [29], [44]. However, there is no evidence that to
what extent this is true in real-world practice.

In this work, we study JavaScript (unit) tests in the wild
from different angles. The results of this study reveal some
of the shortcomings and difficulties of manual testing, which
provide insights on how to improve existing JavaScript test
generation tools and techniques. We perform our study across a
representative corpus of 373 popular JavaScript projects, with
over 5.4 million lines of JavaScript code. To the best of our
knowledge, this work is the first study on JavaScript tests. The
main contributions of our work include:

• A large-scale study to investigate the prevalence of
JavaScript tests in the wild;

• A tool, called TESTSCANNER, which statically extracts
different metrics in our study and is publicly available
[18];

• An evaluation of the quality of JavaScript tests in terms
of code coverage, average number of assertions per test,
test code ratio, and test commit ratio;

• An analysis of the uncovered parts of the code under test
to understand which parts are difficult to cover and why.

II. METHODOLOGY

The goal of this work is to study and characterize JavaScript
tests in practice. We conduct quantitative and qualitative
analyses to address the following research questions:

RQ1: How prevalent are JavaScript tests?
RQ2: What is the quality of JavaScript tests?
RQ3: Which part of the code is mainly uncovered by tests

and why?

A. Subject Systems
We study 373 popular open source JavaScript projects. 138

of these subject systems are the ones used in a study for
JavaScript callbacks [21] including 86 of the most depended-
on modules in the NPM repository [15] and 52 JavaScript
repositories from GitHub Showcases1 [13]. Moreover, we
added 234 JavaScript repositories from Github with over 4000
stars. The complete list of these subjects and our analysis
results, are available for download [18]. We believe that
this corpus of 373 projects is representative of real-world
JavaScript projects as they differ in domain (category), size
(SLOC), maturity (number of commits and contributors), and
popularity (number of stars and watchers).

1GitHub Showcases include popular and trending open source repositories
organized around different topics.



TABLE I: Our JavaScript subject systems (60K files, 3.7 M production SLOC, 1.7 M test SLOC, and 100K test cases).
ID Category # Subject Ave # Ave Prod Ave Test Ave # Ave # Ave #

systems JS files SLOC SLOC tests assertions stars
C1 UI Components, Widgets, and Frameworks 52 41 4.7K 2.8K 235 641 9.8K
C2 Visualization, Graphics, and Animation Libraries 48 53 10.2K 3.8K 425 926 7.5K
C3 Web Applications and Games 33 61 10.6K 1.4K 61 119 4K
C4 Software Development Tools 29 67 12.7K 7.8K 227 578 6.9K
C5 Web and Mobile App Design and Frameworks 25 91 22.3K 6.9K 277 850 14.4K
C6 Parsers, Code Editors, and Compilers 22 167 27K 9.5K 701 1142 5.5K
C7 Editors, String Processors, and Templating Engines 19 26 4.3K 1.9K 102 221 6.5K
C8 Touch, Drag&Drop, Sliders, and Galleries 19 10 1.9K 408 52 72 7.9K
C9 Other Tools and Libraries 17 93 9.1K 7.6K 180 453 8.5K
C10 Network, Communication, and Async Utilities 16 19 4.1K 7.6K 279 354 7.6K
C11 Game Engines and Frameworks 13 86 17K 1.2K 115 293 3.5K
C12 I/O, Stream, and Keyboard Utilities 13 8 0.6K 1K 40 61 1.5K
C13 Package Managers, Build Utilities, and Loaders 11 47 3.4K 5.4K 200 300 8.5K
C14 Storage Tools and Libraries 10 19 4K 7K 222 317 5.5K
C15 Testing Frameworks and Libraries 10 28 2.8K 3.6K 271 632 5.7K
C16 Browser and DOM Utilities 9 45 5.6K 7.1K 76 179 5.2K
C17 Command-line Interface and Shell Tools 9 9 2.8K 1K 26 244 2.6K
C18 Multimedia Utilities 9 11 1.6K 760 17 97 6.2K
C19 MVC Frameworks 9 174 40.1K 15.2K 657 1401 14.2K

Client-side 128 39 8.2K 3.2K 343 798 7.9K
Server-side 130 63 9.4K 7.2K 231 505 6.7K
Client and server-side 115 73 12.7K 4.7K 221 402 7.4K
Total 373 57 10.1K 4.5K 263 644 7.3K

We categorize our subjects into 19 categories using topics
from JSter JavaScript Libraries Catalog [14] and GitHub
Showcases [13] for the same or similar projects. Table I
presents these categories with average values for the number
of JavaScript files (production code), source lines of code
(SLOC) for production and test code, number of test cases,
and number of stars in Github repository for each category.
We used SLOC [17] to count lines of source code excluding
libraries. Overall, we study over 5.4 million (3.7 M production
and 1.7 M test) source lines of JavaScript code.

Figure 1 depicts the distribution of our subject systems
with respect to the client or server side code. Those systems
that contain server-side components are written in Node.js2, a
popular server-side JavaScript framework. We apply the same
categorization approach as explained in [21]. Some projects
such as MVC frameworks, e.g. Angular, are purely client-side,
while most NPM modules are purely server-side. We assume
that client-side code is stored in directories such as www,
public, static, or client. We also use code annotations such
as /* jshint browser:true, jquery:true */ to
identify client-side code.

The 373 studied projects include 128 client-side, 130 server-
side, and 115 client&server-side code. While distributions
in total have almost the same size, they differ per project
category. For instance subject systems in categories C1 (UI
components), C2 (visualization), C8 (touch and drag&drop),
C19 (MVC frameworks), and C18 (multimedia) are mainly
client-side and those in categories C4 (software dev tools), C6
(parsers and compilers), C12 (I/O), C13 (package and build
managers), C14 (storage), C16 (browser utils), and C17 (CLI
and shell) are mainly server-side.

2https://nodejs.org

0%	  

10%	  

20%	  

30%	  

40%	  

50%	  

60%	  

70%	  

80%	  

90%	  

100%	  
C1

	  

C2
	  

C3
	  

C4
	  

C5
	  

C6
	  

C7
	  

C8
	  

C9
	  

C1
0	  

C1
1	  

C1
2	  

C1
3	  

C1
4	  

C1
5	  

C1
6	  

C1
7	  

C1
8	  

C1
9	  

To
ta
l	  

Client	  side	   Server	  side	   Client	  and	  server	  side	  

Fig. 1: Distribution of studied subject systems.

B. Analysis

To address our research questions, we statically and dynam-
ically analyze test suites of our subject programs. To extract
some of the metrics in our study, we develop a static analyzer
tool, called TESTSCANNER [18], which parses production and
test code into an abstract syntax tree using Mozilla Rhino [7].
In the rest of this section we explain details of our analysis
for each research question.

1) Prevalence of tests (RQ1): To answer RQ1, we look
for presence of JavaScript tests written in any framework (e.g.
Mocha, Jasmine, or QUnit). Tests are usually located at folders
namely tests, specs3, or similar names.

We further investigate the prevalence of JavaScript tests
with respect to subject categories, client/server-side code,
popularity (number of stars and watchers), maturity (num-
ber of commits and contributors), project size (produc-
tion SLOC), and testing frameworks. To distinguish testing
frameworks, we analyze package management files (such
as package.json), task runner and build files (such as
grunt.js and gulpfile.js), and test files themselves.

3For instance Jasmine and Mocha tests are written as specs and are usually
located at folders with similar names.

https://nodejs.org


2) Quality of tests (RQ2): To address RQ2, for each subject
with test we compute four quality metrics as following:
Code coverage. Coverage is generally known as an indicator
of test quality. We compute statement, branch, and function
coverage for JavaScript code using JSCover [5] (for tests that
run in the browser), and Istanbul [3]. To calculate coverage
of the minified JavaScript code, we beautify them prior to
executing tests. We also exclude dependencies, such as files
under the node_modules directory, and libraries (unless the
subject system is itself a library).
Average number of assertions per test. Code coverage
does not directly imply a test suite effectiveness [24], while
assertions have been shown to be strongly correlated with it
[49]. Thus, TESTSCANNER also computes average number
of assertions per test case as a test suite quality metric. Our
analysis tools detects usage of well-known assertion libraries
such as assert.js, should.js, expect.js, and chai.
Test code ratio. This metric is defined as the ratio of test
SLOC to production and test SLOC. A program with a high
test code ratio may have a higher quality test suite.
Test commit ratio. This metric is the ratio of test commits
to total commits. Higher test commit ratio may indicate more
mature and higher quality tests. We assume that every commit
that touches at least one file in a folder named test, tests, spec,
or specs is a test commit. In rare cases that tests are stored
elsewhere, such as the root folder, we manually extract number
of test commits by looking at its Github repository page and
counting commits on test files.

We investigate these quality metrics with respect to subject
categories, client/server-side code, and testing frameworks.

3) (Un)covered code (RQ3): Code coverage is a widely
accepted test quality indicator, thus finding the root cause of
why a particular statement is not covered by a test suite, can
help in writing higher quality tests. Some generic possible
cases for an uncovered (missed) statement s, are as following:

1) s belongs to an uncovered function f , where
a) f has no calling site in both the production and the

test code. In this case, f could be (1) a callback
function sent to a callback-accepting function (e.g.,
setTimeout()) that was never invoked, or (2) an
unused utility function that was meant to be used in
previous or future releases. Such unused code can be
considered as code smells [28]. Consequently we can-
not pinpoint such an uncovered function to a particular
reason.

b) the calling site for f in the production code was never
executed by a test. Possible root causes can be that
(1) f is used as a callback (e.g. event-dependent or
asynchronous) that was never invoked, (2) the call to
f statement was never reached because of an earlier
return statement or an exception, or the function
call falls in a never met condition branch.

c) f is an anonymous function. Possible reasons that f
was not covered can be that (1) f is used as a call-
back that was never invoked (e.g. an event-dependent
callback while the required event was not triggered, or
an asynchronous callback while did not wait for the
response), (2) f is a self-invoking function that was

not executed to be invoked, or (3) f is set to a variable
and that variable was never used or its usage was not
executed.

2) s belongs to a covered function f , where
a) the execution of f was terminated, by a return

statement or an exception, prior to reaching s.
b) s falls in a never met condition in f (e.g. browser or

DOM dependent statements).
3) The test case responsible for covering s was not executed

due to a test execution failure.
4) s is a dead (unreachable) code.

Uncovered statement in uncovered function ratio. If an
uncovered statement s belongs to an uncovered function f ,
making f called could possibly cover s as well. This is
important specially if f needs to be called in a particular way,
such as through triggering an event.

In this regard, our tool uses coverage report information (in
json or lcov format) to calculate the ratio of the uncovered
statements that fall within uncovered functions over the total
number of uncovered statements. If this value is large it
indicates that the majority of uncovered statements belong
to uncovered functions, and thus code coverage could be
increased to a high extent if the enclosing function is called
by a test case.
Hard-to-test JavaScript code. Some JavaScript features,
such as DOM interactions, event-dependent callbacks, asyn-
chronous callbacks, and closures (hidden scopes), are con-
sidered to be harder to test [1], [2], [12], [11], [29], [44].
In this section we explain four main hard-to-test code with
an example code snippet depicted in Figure 2. Also we fine-
grain statement and function coverage metrics to investigate
these hard-to-test code separately in detail. To measure these
coverage metrics, TESTSCANNER maps a given coverage
report to the locations of hard-to-test code.
DOM related code coverage. In order to unit test a JavaScript
code with DOM read/write operations, a DOM instance has to
be provided as a test fixture in the exact structure expected by
the code under test. Otherwise, the test case can terminate
prematurely due to a null exception. Writing such DOM
based fixtures can be challenging due to the dynamic nature
of JavaScript and the hierarchical structure of the DOM
[29]. For example, to cover the if branch at line 29 in
Figure 2, one needs to provide a DOM instance such as
<div id="checkList"><input type="checkbox"
checked></input></div>. To cover the else branch, a
DOM instance such as <div id="checkList"><input
type="checkbox"></input></div> is required. If
such fixtures are not provided, $("checkList") returns
null as the expected element is not available, and thus
checkList.children causes a null exception and the test
case terminates.

DOM related code coverage is defined as the fraction
of number of covered over total number of DOM related
statements. A DOM related statement is a statement that
can affect or be affected by DOM interactions such as
a DOM API usage. To detect DOM related statements
TESTSCANNER extracts all DOM API usages in the code (e.g.
getElementById, createElement, appendChild,



1 function setFontSize(size) {
2 return function() {
3 // this is an anonymous closure
4 document.body.style.fontSize = size + 'px';
5 };
6 }
7 var small = setFontSize(12);
8 var large = setFontSize(16);
9 ...

10 function showMsg() {
11 // this is an async callback
12 alert("Some message goes here!");
13 }
14 ...
15 $("#smallBtn").on("click", small);
16 $("#largeBtn").on("click", large);
17 $("#showBtn").on("click", function() {
18 // this is an event-dependent anonymous callback
19 setTimeout(showMsg, 2000);
20 $("#photo").fadeIn("slow", function() {
21 // this is an anonymous callback
22 alert("Photo animation complete!");
23 });
24 });
25 ...
26 checkList = $("#checkList");
27 checkList.children("input").each(function () {
28 // this is an DOM-related code
29 if (this.is(':checked')) {
30 ...
31 }else{
32 ...
33 }
34 });

Fig. 2: A hard to test JavaScript code snippet.

addEventListener, $, and innerHTML) and their for-
ward slices. Forward slicing is applied on the variables that
were assigned with a DOM element/attribute. For example
the forward slice of checkList at line 26 in Figure 2
are lines 27–34. A DOM API could be located in a (1)
return statement of a function f , (2) conditional statement,
(3) function call (as an argument), (4) an assignment statement,
or (5) other parts within a scope. In case (1), all statements
that has a call to f are considered DOM related. In case
(2), the whole conditional statements (condition and the body
of condition) are considered DOM related. In case (3) the
statements in the called function, which use that DOM input
will be considered DOM related. In other cases, the statement
with DOM API is DOM related.

Event-dependent callback coverage. The execution of some
JavaScript code may require triggering an event such as
clicking on a particular DOM element. For instance it is very
common in JavaScript client-side code to have an (anonymous)
function bound to an element’s event, e.g. a click, which has
to be simulated. The anonymous function in lines 17–24 is
an event-dependent callback function. Such callback functions
would only be passed and invoked if the corresponding event
is triggered. In order to trigger an event, testers can use meth-
ods such as jQuery’s .trigger(event, data, ...)
or .emit(event, data, ...) of Node.js EventEmitter.
Note that if an event needs to be triggered on a DOM element,
a proper fixture is required otherwise the callback function
cannot be executed.

Event-dependent callback coverage is defined as the fraction
of number of covered over total number of event-dependent
callback functions. In order to detect event-dependent call-

backs, our tool checks if a callback function is an event
method such as bind, click, focus, hover, keypress,
emit, addEventListener, onclick, onmouseover,
and onload.
Asynchronous callback coverage. Callbacks are functions
passed as an argument to another function to be invoked either
immediately (synchronous) or at some point in the future
(asynchronous) after the enclosing function returns. Callbacks
are particularly useful to perform non-blocking operations.
Function showMsg in lines 10–13 is an asynchronous call-
back function as it was passed to the setTimeout() asyn-
chronous API call. Testing asynchronous callbacks requires
waiting until the callback is called, otherwise the test would
probably finish unsuccessfully before the callback is invoked.
For instance QUnit’s asyncTest allows tests to wait for
asynchronous callbacks to be called.

Asynchronous callback coverage is defined as the fraction of
number of covered over total number of asynchronous callback
functions. Similar to a study of callbacks in JavaScript [21], if
a callback argument is passed into a known deferring API call
we count it as as an asynchronous callback. TESTSCANNER
detects some asynchronous APIs including network calls (e.g.
XMLHTTPRequest.open), DOM events (e.g. onclick),
timers (setImmediate, setTimeout, setInterval,
and process.nextTick), and I/O (e.g. APIs of fs, http,
and net).
Closure function coverage. Closures are nested functions that
make it possible to create hidden scope to privatize variables
and functions from the global scope in JavaScript. A closure
function, i.e., the inner function, has access to all parameters
and variables – except for this and argument variables –
of the outer function, even after the outer function has returned
[20]. The anonymous function in lines 2–5 is an instance of a
closure.

Such hidden functions cannot be called directly in a test case
and thus testing them is challenging. In fact writing a unit test
for a closure function without code modification is impossible.
Simple solutions such as making them public or putting the
test code inside the closure are not good software engineering
practices. One approach to test such private functions is adding
code inside the closure to store references to its local variables
inside objects and return it to the outer scope [2]. Closure
function coverage is defined as the fraction of number of
covered over total number of closure functions.
Average number of function calls per test. Some code func-
tionalities depend on the execution of a sequence of function
calls. For instance in a shopping application, one needs to add
items to the cart prior to check out. We perform a correlation
analysis between average number of unique function calls per
test and code coverage. We also investigate whether JavaScript
unit tests are mostly written at single function level or they
execute sequence of function calls.

III. RESULTS

A. Prevalence of Tests (RQ1)
The stacked bar charts in Figure 3(a) depicts the percentage

of JavaScript tests, per system category (Table I), per clien-
t/server side, and in aggregate. The height of each bar indicates



0%	  

10%	  

20%	  

30%	  

40%	  

50%	  

60%	  

70%	  

80%	  

90%	  

100%	  

C1
	  

C2
	  

C3
	  

C4
	  

C5
	  

C6
	  

C7
	  

C8
	  

C9
	  

C1
0	  

C1
1	  

C1
2	  

C1
3	  

C1
4	  

C1
5	  

C1
6	  

C1
7	  

C1
8	  

C1
9	  

Cl
ie
nt
	  

Se
rv
er
	  

Cl
ie
nt
-‐S
er
ve
r	  

To
ta
l	  

Mocha	   No	  tests	   Jasmine	   QUnits	   Other	  frameworks	   Its	  own	  tests	  

(a) Distribution within all subjects.

Mocha	  
38%	  

Jasmine	  
19%	  

QUnits	  
18%	  

Own	  tests	  
6%	  

Tap	  
5%	  

Tape	  
4%	  

Others	  
4%	  

Nodeunit	  
3%	  

Vows	  
3%	  

(b) Testing frameworks distribution.

Fig. 3: Distribution of JavaScript tests.

0%	  

20%	  

40%	  

60%	  

80%	  

100%	  

1-‐4K	   4K-‐5.6K	   5.6K-‐8.9K	   8.9K-‐92K	  

(a) Number of stars

0%	  

20%	  

40%	  

60%	  

80%	  

100%	  

1-‐151	   151-‐262	   262-‐444	   444-‐6K	  

(b) Number of watchers

0%	  

20%	  

40%	  

60%	  

80%	  

100%	  

1-‐251	   254-‐701	   710-‐1.8K	   1.8K-‐27.6K	  

(c) Number of commits

0%	  

20%	  

40%	  

60%	  

80%	  

100%	  

1-‐19	   19-‐46	   47-‐102	   102-‐1.4K	  

(d) Number of contributors

Fig. 4: Percentage of subjects with test per each quartile with respect to popularity (number of stars and watchers)
and maturity (number of commits and contributors).

the percentage of subjects in that category. In total, among
the 373 studied subjects, 83 of them (i.e., 22%) do not have
JavaScript tests. The majority (78%) of subjects have at least
one test case.
Finding 1: 22% of the subject systems that we studied do
not have any JavaScript test, and 78% have at least one test
case.

As shown in figure 3(b), amongst subjects with test, the
majority of tests are written in Mocha (38%), Jasmine (19%),
and QUnit (18%). 6% does not follow any particular frame-
work and have their own tests. Minor used frameworks are
Tap (5%), Tape (4%), Nodeunit (3%), Vows (3%) and others
(4%) including Jest, Evidence.js, Doh, CasperJS, Ava, UTest,
TAD, and Lab. We also observe that 3 repositories have
tests written in two testing frameworks: 2 projects (server
and client-server) with Nodeunit+Mocha test, and one (client-
server) with Jasmine+QUnit test.
Finding 2: The most prevalent used test frameworks for
JavaScript unit testing are Mocha (38%), Jasmine (19%),
and QUnit (18%).

We also investigate the prevalence of UI tests and observe
that only 12 projects (i.e., 3%) among all 373 ones have UI
tests for which 9 are written using Webdriverio and Selenium
webdriver, and 3 uses CasperJS. 7 of these projects are client
and server side, 3 are client-side, and 2 are server-side. One
of these subjects does not have any JavaScript test.
Finding 3: Only 3% of the studied repositories have func-
tional UI tests.

Almost all (95%) of purely server-side JavaScript projects
have tests, while this is 61% for client-side and 76% for
client&server-side ones. Note that the number of subjects in
each category are not very different (i.e., 128 client-side, 130
server-side, and 115 client and server-side code). Interestingly
the distribution of test frameworks looks very similar for
client-side and client-server side projects.

As shown in Figure 3(a), all subjects systems in categories
C6 (parsers and compilers), C12 (I/O), C13 (package and
build managers), C14 (storage), C19 (MVC frameworks), and
C17(CLI and shell), have JavaScript unit tests. Projects in
all of these categories, except for C19, are mainly server-
side as depicted in Figure 1. In contrast, many of subjects in
categories C1 (UI components), C3 (web apps), C8 (touch and
drag&drop), and C18 (multimedia) do not have tests, which
are mainly client-side. Thus we can deduce that JavaScript
tests are written more for server-side code than client-side, or
client and server-side code.

Finding 4: While almost all subjects (95%) in the server-
side category have tests, about 40% of subjects in client-side
and client-server side categories do not have tests.

We believe the more prevalence of tests for server-side code
can be attributed to (1) the difficulties in testing client-side
code, such as writing proper DOM fixtures or triggering events
on DOM elements, and (2) using time-saving test scripts
for most Node.js based projects, such as npm test that is
included by default when initializing a new package.json
file. This pattern is advocated in the Node.js community [16]



Client Server Client-Server Total

0
20

40
60

80
10
0

C
ov

er
ag

e 
(%

)

(a) Statement coverage

Client Server Client-Server Total

0
20

40
60

80
10
0

C
ov

er
ag

e 
(%

)

(b) Branch coverage

Client Server Client-Server Total

0
20

40
60

80
10
0

C
ov

er
ag

e 
(%

)

(c) Function coverage

Fig. 5: Boxplots of the code coverage of the executed JavaScript tests. Mean values are shown with (*).

and thus many server-side JavaScript code, such as NPM
modules, have test code.

We also consider how popularity (number of stars and
watchers) and maturity (number of commits and contributors)
of subject systems are related to the prevalence of unit tests.
Figure 4(a) shows the percentage of subjects with tests in each
quartile. As popularity and maturity increase, the percentage
of subjects with test increases as well.

B. Quality of Tests (RQ2)

Code coverage. Calculating the code coverage requires ex-
ecuting tests on a properly deployed project. In our study,
however, we faced number of projects with failure in build/de-
ployment or running tests. We tried to resolve such prob-
lems by quick changes in build/task configuration files or
by retrieving a later version (i.e., some days after fetching
the previous release). In most cases build failure was due to
errors in dependent packages or their absence. We could finally
calculate coverage for 231 out of 290 (about 80%) subjects
with tests. We could not properly deploy or run tests for 44
subject systems (41 with test run failure, freeze, or break, and
3 build and deployment error), and could not get coverage
report for 15 projects with complex test configurations.

Boxplots in Figure 5 show that in total tests have a median
of 83% statement coverage, 84% function coverage, and
69% branch coverage. Tests for server-side code have higher
coverage in all aspects compared to those for client-side code.
We narrow down our coverage analysis into different subject
categories. As depicted in Table II, subjects in categories C6
(parsers and compilers), C10 (Network and Async), C12 (I/O),
C13 (package and build managers), C14 (storage), C15 (testing
frameworks), and C19 (MVC frameworks) on average have
higher code coverage. Projects in these categories are mainly
server-side. In contrast, subjects in categories C2 (visualiza-
tion), C3 (web apps), C8 (touch and drag&drop), C11 (game
engines), C17 (CLI and shell), and C18 (multimedia), have
lower code coverage. Note that subjects under these categories
are mainly client-side.

Finding 5: The studied JavaScript tests have a median of
83% statement coverage, 84% function coverage, and 69%
branch coverage. Tests for server-side code have higher
coverage in all aspects compared to those for client-side
code.

Client Server Client-Server Total

0
1

2
3

4
5

6

A
ve

 #
 a

ss
er

tio
ns

 p
er

 te
st

Fig. 6: Average number of assertions per test.

Table II also depicts the achieved coverage per testing
framework. Tests written in Tape, Tap, and Mocha have
generally higher code coverage. The majority of server-side
JavaScript projects are tested using these frameworks. On the
other hand, tests written in QUnit, which is used more often
for the client-side than the server-side, has generally lower
code coverage. Developers that used their own style of testing
without using popular frameworks write tests with the poorest
coverage.

Finding 6: Tests written in Tape, Tap, and Mocha frame-
works, generally have higher coverage compared to those
written in QUnit, Nodeunit, and those without using any test
framework.

Average number of assertions per test. Figure 6 depicts
boxplots of average number of assertions per test case. While
median values are very similar (about 2.2) for all cases,
server-side code has a slightly higher mean value (3.16)
compared to client-side (2.71). As shown in Table II, subjects
in categories C3 (web apps), C11 (game engines), C15 (testing
frameworks), C17 (CLI and shell), C18 (multimedia), and C19
(MVC frameworks) on average have higher average number
of assertions per test compared to others. Interestingly among
these categories only for C15 and C19 code coverage is also
high while it is low for the rest.

Finding 7: The studied test suites have a median of 2.19
and a mean of 2.96 for the average number of assertions
per test. These values do not differ much among server-side
and client-side code.

Also results shown in Table II indicate that tests written in
QUnit, Tape, Nodeunit, other frameworks (e.g. Jest, CasperJS,



TABLE II: Test quality metrics average values.
Statement Branch Function Ave # Test Test
coverage coverage coverage assertions code commit

per test ratio ratio

Su
bj

ec
t

ca
te

go
ry

C1 77% 57% 76% 2.83 0.41 0.16
C2 67% 52% 65% 2.72 0.28 0.14
C3 60% 38% 58% 3.75 0.88 0.14
C4 79% 68% 78% 2.50 0.58 0.24
C5 75% 63% 75% 2.53 0.52 0.21
C6 87% 79% 88% 2.53 0.47 0.24
C7 80% 67% 72% 2.51 0.46 0.22
C8 64% 47% 60% 2.04 0.35 0.12
C9 73% 58% 69% 2.67 0.49 0.23
C10 91% 79% 90% 2.73 0.72 0.24
C11 64% 45% 57% 3.41 0.18 0.11
C12 90% 77% 89% 2.36 0.59 0.20
C13 86% 67% 84% 2.27 0.59 0.18
C14 88% 77% 87% 2.74 0.62 0.26
C15 81% 69% 79% 5.79 0.59 0.25
C16 78% 67% 79% 1.67 0.49 0.29
C17 67% 54% 63% 8.32 0.47 0.21
C18 60% 31% 62% 4.42 0.31 0.16
C19 81% 67% 80% 3.58 0.53 0.21

Te
st

in
g

fr
am

ew
or

k Mocha 82% 70% 79% 2.39 0.49 0.20
Jasmine 74% 60% 75% 1.93 0.41 0.21
QUnit 71% 54% 71% 3.93 0.41 0.16
Own test 61% 41% 58% 5.99 0.30 0.16
Tap 89% 80% 89% 1.56 0.58 0.21
Tape 93% 81% 94% 2.93 0.70 0.18
Others 80% 65% 77% 5.60 0.46 0.24
Nodeunit 74% 63% 72% 6.20 0.57 0.24
Vows 74% 66% 72% 1.92 0.55 0.27
Client 70% 53% 70% 2.71 0.36 0.16
Server 85% 74% 83% 3.16 0.58 0.23
C&S 72% 56% 70% 2.9 0.4 0.18
Total 78% 64% 76% 2.96 0.46 0.2

and UTest), and those without using a framework, have on
average more assertions per test. The majority of server-side
JavaScript projects are tested using these frameworks. Again
we observe that only for tests written in Tape framework code
coverage is also high while it is low for the rest.
Test code ratio. Figure 7 shows test to total (production and
test) code ratio comparison. The median and mean of this
ratio is about 0.6 for server-side projects and about 0.35 for
client-side ones. As shown in Table II, on average subjects
with higher test code ratio belongs to categories C3, C4, C5,
C10, C12, C13, C14, C15, and C19 while those in C2, C8,
C11, and C18 have lower test code ratio. Also tests written
in Tap, Tape, Nodeunit, and Vows have higher test code ratio
while tests written without using any framework have lower
test code ratio.

We further study the relationship between test code ratio and
total code coverage (average of statement, branch, and function
coverage) through the Spearman’s correlation analysis4. The
result shows that there exists a moderate to strong correlation
(ρ = 0.68, p = 0) between test code ratio and code coverage.
Finding 8: Tests for server-side code have higher test code
ratio (median and mean of about 0.6) compared to client-
side code (median and mean of about 0.35). Also there exists
a moderate to strong correlation (ρ = 0.68, p = 0) between
test code ratio and code coverage.

4The non-parametric Spearman’s correlation coefficient measures the mono-
tonic relationship between two continuous random variables and does not
require the data to be normally distributed.

Client Server Client-Server Total

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Te
st

 c
od

e 
ra

tio

Fig. 7: Test to total code ratio.

Client Server Client-Server Total

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Te
st

 c
om

m
it 

ra
tio

Fig. 8: Test to total commits ratio.

Test commit ratio. Figure 8 depicts test to total (production
and test) commit ratio comparison. The median and mean of
this ratio is about 0.25 for server-side projects and about 0.15
for client-side ones. As shown in Table II, on average subjects
with higher test commit ratio belongs to categories C4, C6,
C9, C10, C14, C15, and C16 while those in C1, C2, C3, C8,



TABLE III: Statistics for analyzing uncovered code. The "–" sign indicates no instance of a particular code.
Function coverage Statement coverage

All Async Event Closure All DOM Ave # USUF
callback dependent related func calls ratio

callback per test

Su
bj

ec
t

ca
te

go
ry

C1 76% 65% 33% 79% 77% 73% 2.91 0.59
C2 65% 43% 17% 62% 67% 61% 2.82 0.73
C3 58% 21% 10% 38% 60% 27% 3.94 0.82
C4 79% 49% 48% 70% 81% 75% 2.89 0.53
C5 75% 52% 33% 65% 75% 62% 3.05 0.72
C6 88% 60% 32% 87% 87% 57% 3.30 0.33
C7 72% 34% 28% 81% 80% 52% 3.11 0.52
C8 60% 40% 39% 80% 64% 78% 2.18 0.77
C9 69% 14% 8% 80% 73% 23% 2.89 0.59
C10 90% 65% 60% 95% 91% 81% 4.98 0.5
C11 57% 33% 7% 68% 64% 51% 2.79 0.85
C12 89% 85% 68% 98% 90% 85% 3.56 0.32
C13 84% 71% 74% 60% 86% 85% 2.86 0.49
C14 87% 66% 36% 89% 88% – 2.98 0.62
C15 79% 70% 39% 62% 81% 58% 2.16 0.59
C16 79% 40% 5% 43% 78% 48% 2.69 0.39
C17 63% 7% 5% 56% 67% – 2.42 0.65
C18 62% – 0% 89% 60% 40% 2.19 0.86
C19 81% 61% 47% 76% 82% 62% 2.92 0.53

Te
st

in
g

fr
am

ew
or

k Mocha 79% 50% 34% 71% 82% 58% 3.62 0.56
Jasmine 75% 65% 34% 69% 74% 62% 2.28 0.71
QUnit 71% 53% 28% 76% 71% 68% 3.35 0.66
Own test 58% 45% 26% 66% 61% 51% 1.78 0.63
Tap 89% 68% 87% 94% 89% – 2.52 0.24
Tape 94% 79% 65% 92% 93% 88% 3.19 0.22
Others 77% 33% 30% 66% 80% 79% 2.14 0.48
Nodeunit 72% 53% 63% 74% 74% 52% 4.08 0.62
Vows 72% 60% 38% 79% 74% 0% 1.60 0.6
Client 70% 46% 25% 69% 70% 66% 2.96 0.68
Server 83% 64% 48% 82% 85% 67% 3.19 0.45
C&S 70% 48% 29% 69% 72% 57% 2.93 0.69
Total 76% 53% 36% 74% 78% 63% 3.05 0.57

C11, and C18 have lower test commit ratio. Also tests written
in Nodeunit, Vows, and other frameworks (e.g. Jest, CasperJS,
and UTest) have higher test commit ratio while tests written in
QUnit or without using any framework have lower test commit
ratio.

Similar to the correlation analysis for test code ratio, we
study the relationship between test commit ratio and total code
coverage. The result indicates that there exists a moderate to
low correlation (ρ = 0.49, p = 0) between test commit ratio
and code coverage.

Finding 9: While test commit ratio is relatively high for
server-side projects (median and mean of about 0.25), it is
moderate in total and relatively low for client-side projects
(median and mean of about 0.15). Also there exists a
moderate to low correlation (ρ = 0.49, p = 0) between test
commit ratio and code coverage.

C. (Un)covered Code (RQ3)
As explained earlier in Section II-B3, one possible root

cause for uncovered code is that the responsible test code
was not executed. In our evaluation, however, we observed
that for almost all the studied subjects, test code had very
high coverage meaning that almost all statements in test code
were executed properly. Thus the test code coverage does not
contribute in the low coverage of production code.
Uncovered statement in uncovered function (USUF) ratio.
If an uncovered code c belongs to an uncovered function

f , making f called could possibly cover c as well. As
described in Section II-B3, we calculate the ratio of uncovered
statements that fall within uncovered functions over the total
number of uncovered statements.

Table III shows average values for this ratio (USUF). The
mean value of USUF ratio is 0.57 in total, 0.45 for server-
side projects, and about 0.7 for client-side ones. This indicate
that the majority of uncovered statements in client-side code
belong to uncovered functions, and thus code coverage could
be increased to a high extent if the enclosing function could
be called during test execution.

Finding 10: A large portion of uncovered statements fall
in uncovered functions for client-side code (about 70%)
compared to server-side code (45%).

Hard-to-test-function coverage. We measure coverage for
hard-to-test functions as defined in Section II-B3. While
the average function coverage in total is 76%, the average
event-dependent callback coverage is 36% and the average
asynchronous callback coverage is 53%. The average value of
closure function coverage in total is 74% and for server-side
subjects is 82% while it is 69% for client-side ones.

Finding 11: On average, JavaScript tests have low coverage
for event-dependent callbacks (36%) and asynchronous call-
backs (53%). Average values for client-side code are even
worse (25% and 46% respectively). The average, closure
function coverage is 74%.



We measure the impact of tests with event triggering meth-
ods on event-dependent callback coverage, and writing async
tests on asynchronous callback coverage through correlation
analysis. The results show that there exists a weak correlation
(ρ = 0.22) between number of event triggers and event-
dependent callback coverage, and a very weak correlation (ρ =
0.1) between number of asynchronous tests and asynchronous
callback coverage.

Finding 12: There is no strong correlation between number
of event triggers and event-dependent callback coverage.
Also number of asynchronous tests and asynchronous call-
back coverage are not strongly correlated.

This was contrary to our expectation for higher correlations,
however, we observed that in some cases asynchronous tests
and tests that trigger events were written to merely target spe-
cific parts and functionalities of the production code without
covering most asynchronous or event-dependent callbacks.
DOM related code coverage. On average, JavaScript tests
have a moderately low coverage of 63% for DOM-related
code. We also study the relationship of existence of DOM
fixtures and DOM related code coverage through correlation
analysis. The result shows that there exists a correlation of ρ
= 0.4, p = 0 between having DOM fixtures in tests and DOM
related code coverage. Similar to the cases for event-dependent
and async callbacks, we also observed that DOM fixtures were
mainly written for executing a subset of DOM related code.

Finding 13: On average, JavaScript tests lack proper cov-
erage for DOM-related code (63%). Also there exists a
moderately low correlation (ρ = 0.4) between having DOM
fixtures in tests and DOM related code coverage.

Average number of function calls per test. As explained
in Section II-B3, we investigate number of unique function
calls per test. The average number of function calls per test
has a mean value of about 3 in total and also across server-
side and client-side code. We further perform a correlation
analysis between the average number of function calls per test
and total code coverage. The result shows that there exists a
weak correlation (ρ = 0.13, p = 0) between average number
of function calls per test and code coverage.

Finding 14: On average, there are about 3 function calls
to production code per test case. The average number of
function calls per test is not strongly correlated with code
coverage.

D. Discussion

Implications. Our findings regarding RQ1 indicate that the
majority (78%) of studied JavaScript projects and in particular
popular and trending ones have at least one test case. This
indicates that JavaScript testing is getting attention, however,
it seems that developers have less tendency to write tests for
client-side code as they do for the server-side code. Possible
reasons could be difficulties in writing proper DOM fixtures
or triggering events on DOM elements. We also think that
the high percentage of test for server-side JavaScript can
be ascribed to the testing pattern that is advocated in the

Node.js community [16]. To assist developers with testing
their JavaScript code, we believe that it is worthwhile for the
research community to invest on developing test generation
techniques in particular for the client-side code, such as [33],
[29], [32].

For RQ2, the results indicate that in general, tests written
for mainly client-side subjects in categories C2 (visualization),
C8 (touch and drag&drop), C11 (game engines), and C18
(multimedia) have lower quality. Compared to the client-side
projects, tests written for the server-side have higher quality
in terms of code coverage, test code ratio, and test commit
ratio. The branch coverage in particular for client-side code is
low, which can be ascribed to the challenges in writing tests
for DOM related branches. We investigate reasons behind the
code coverage difference in Section III-C. The higher values
for test code ratio and test commit ratio can also be due to the
fact that writing tests for server-side code is easier compared
to client-side.

Developers and testers could possibly increase code cover-
age of their tests by using existing JavaScript test generator
tools, such as Kudzu [41], ARTEMIS [19], JALANGI [42],
SymJS [27], JSEFT [32], and CONFIX [29]. Tests written in
Mocha, Tap, Tape, and Nodeunit generally have higher test
quality compared to other frameworks and tests that do not
use any testing framework. In fact developers that do not write
their test by leveraging an existing testing framework write
low quality tests almost in all aspects. Thus we recommend
JavaScript developers community to use a well-maintained and
mature testing framework to write their tests.

As far as RQ3 is concerned, our study shows that JavaScript
tests lack proper coverage for event-dependent callbacks, asyn-
chronous callbacks, and DOM-related code. Since these parts
of code are hard to test they can be error prone and thus
requires effective targeted tests. For instance a recent empirical
study [36] reveals that the majority of reported JavaScript bugs
and the highest impact faults are DOM-related.

It is expected that using event triggering methods in tests, in-
crease coverage for event-dependent callbacks, asynchronous
callbacks, and DOM-related statements. However, our results
do not show a strong correlation to support this. Our manual
analysis revealed that tests with event triggering methods,
async behaviours, and DOM fixtures are mainly written to
cover only particular instances of event-dependent callbacks,
asynchronous callbacks, or DOM-related code. This again can
imply difficulties in writing tests with high coverage for such
hard-to-test code.

We believe that there is a research potential in this regard
for proposing test generation techniques tailored to such
uncovered parts. While most current test generation tools for
JavaScript produce tests at single function level, in practice
developers often write tests that invoke about 3 functions per
test on average. It might also worth for researchers to develop
test generation tools that produce tests with a sequence of
function calls per test case.

Finally, we observed that UI tests are much less prevalent
in the studied JavaScript projects. Our investigation of the
coverage report did not show a significant coverage increase
on the uncovered event-dependent callbacks or DOM-related
code between UI and unit tests. Since UI tests do not need



DOM fixture generation, they should be able to trigger more
of the UI events, compared to code level unit tests. It would be
interesting to further investigate this in JavaScript applications
with large UI tests.
Test effectiveness. Another test quality metric that is interest-
ing to investigate is test effectiveness. An ideal effective test
suite should fail if there is a defect in the code. Mutation score,
i.e., the percentage of killed mutants over total non-equivalent
mutants, is often used as an estimate of defect detection
capability of a test suite. In fact it has been shown that there
exists a significant correlation between mutant detection and
real fault detection [26]. In this work, however, we did not
consider mutation score as a quality metric as it was too costly
to generate mutants for each subject and execute the tests
on each of them. We believe that it is worthwhile to study
the effectiveness of JavaScript tests using mutation testing
techniques, such as Mutandis [31], which guides mutation
generation towards parts of the code that are likely to affect
the program output. This can help to find out which aspects
of code are more error-prone and not well-tested. Apart from
test quality evaluation based on mutation score, studying
JavaScript bug reports [37] and investigating bug locations,
can give us new insights for developing more effective test
generation tools.
Threats to validity. With respect to reproducibility of the
results, our tool and list of the studied subjects are publicly
available [18]. Regarding the generalizability of the results to
other JavaScript projects, we believe that the studied set of
subjects is representative of real-world JavaScript projects as
they differ in domain (category), size (SLOC), maturity (num-
ber of commits and contributors), and popularity (number of
stars and watchers). With regards to the subject categorization,
we used some existing categories proposed by JSter Catalog
[14] and GitHub Showcases [13].

There might be case that TESTSCANNER cannot detect
a desired pattern in the code as it performs complex static
code analysis for detecting DOM-related statements, event-
dependent callbacks, and asynchronous APIs. To mitigate this
threat, we made a second pass of manual investigation through
such code patterns using grep with regular expressions in
command line and manually validated random cases. Such
a textual search within JavaScript files through grep was
especially done for a number of projects with parsing errors in
their code for which TESTSCANNER cannot generate a report
or the report would be incomplete. Since our tool statically
analyzes test code to compute the number of function calls
per test, it may not capture the correct number of calls that
happen during execution. While dynamic analysis could help
with this regard, it can not be used for the unexecuted code
and thus is not helpful to analyze uncovered code.

IV. RELATED WORK

There are number of previous empirical studies on
JavaScript. Ratanaworabhan et al. [38] and Richards et al. [40]
studied JavaScript’s dynamic behavior and Richards et al. [39]
analyzed security issues in JavaScript projects. Ocariza et al.
[37] performed study to characterize root causes of client-
side JavaScript bugs. Gallaba et al. [21] studied the use of
callback in client and server-side JavaScript code. Security

vulnerabilities in JavaScript have also been studied on remote
JavaScript inclusions [35], [47], cross-site scripting (XSS)
[46], and privacy violating information flows [25]. Milani Fard
et al. [28] studied code smells in JavaScript code. Nguyen et
al. [34] performed usage patterns mining in JavaScript web
applications.

Researchers also studied test cases and mining test suites
in the past. Inozemtseva et al. [24] found that code coverage
does not directly imply the test suite effectiveness. Zhang et
al. [49] analyzed test assertions and showed that existence of
assertions is strongly correlated with test suite effectiveness.
Vahabzadeh et al. [45] studied bugs in test code. Milani Fard
et al. proposed Testilizer [30] that mines information from
existing test cases to generate new tests. Zaidman et al. [48]
investigated co-evolution of production and test code.

These work, however, did not study JavaScript tests. Related
to our work, Mirshokraie et al. [31] presented a JavaScript
mutation testing approach and as part of their evaluation,
assessed mutation score for test suites of two JavaScript
libraries. To the best of our knowledge, our work is the first
(large scale) study on JavaScript tests and in particular their
quality and shortcomings.

V. CONCLUSIONS AND FUTURE WORK

JavaScript is heavily used to build responsive client-side
web applications as well as server-side projects. While some
JavaScript features are known to be hard to test, no empirical
study was done earlier towards measuring the quality and
coverage of JavaScript tests. This work presents the first empir-
ical study of JavaScript tests to characterize their prevalence,
quality metrics, and shortcomings.

We found that a considerable number of JavaScript projects
do not have any tests and this is in particular for projects with
client-sideJavaScript code. On the other hand, almost all purely
server-side JavaScript projects have tests and the quality of
those tests are higher compared to client-side tests. On average,
JavaScript tests lack proper coverage for event-dependent
callbacks, asynchronous callbacks, and DOM-related code.

The results of this study can be used to improve JavaScript
test generation tools in producing more effective test cases that
target hard-to-test portions of the code. We also plan to evalu-
ate effectiveness of JavaScript test by measuring their mutation
score, which reveals the quality of written assertions. Another
possible direction could be designing automated JavaScript
code refactoring techniques towards making the code more
testable and maintainable.

ACKNOWLEDGMENT

This work was supported by the National Science and
Engineering Research Council of Canada (NSERC) through
its Strategic Project Grants programme and Alexander Graham
Bell Canada Graduate Scholarship.

REFERENCES

[1] Examples of hard to test JavaScript. https://www.pluralsight.com/blog/
software-development/6-examples-of-hard-to-test-javascript.

[2] How to unit test private functions in JavaScript. https://philipwalton.
com/articles/how-to-unit-test-private-functions-in-javascript/.

[3] Istanbul - a JS code coverage tool written in JS. https://github.com/
gotwarlost/istanbul.

[4] Jasmine. https://github.com/pivotal/jasmine.

https://www.pluralsight.com/blog/software-development/6-examples-of-hard-to-test-javascript
https://www.pluralsight.com/blog/software-development/6-examples-of-hard-to-test-javascript
https://philipwalton.com/articles/how-to-unit-test-private-functions-in-javascript/
https://philipwalton.com/articles/how-to-unit-test-private-functions-in-javascript/
https://github.com/gotwarlost/istanbul
https://github.com/gotwarlost/istanbul
https://github.com/pivotal/jasmine


[5] Jscover. http://tntim96.github.io/JSCover/.
[6] Mocha. https://mochajs.org/.
[7] Mozilla Rhino. https://github.com/mozilla/rhino.
[8] Nodeunit. https://github.com/caolan/nodeunit.
[9] QUnit. http://qunitjs.com/.

[10] Which JavaScript test library should
you use? http://www.techtalkdc.com/
which-javascript-test-library-should-you-use-qunit-vs-jasmine-vs-mocha/.

[11] Writing testable code in JavaScript: A brief overview. https://www.
toptal.com/javascript/writing-testable-code-in-javascript.

[12] Writing testable JavaScript. http://www.adequatelygood.com/
Writing-Testable-JavaScript.html.

[13] Github Showcases. https://github.com/showcases, 2014.
[14] JSter JavaScript Libraries Catalog. http://jster.net/catalog, 2014.
[15] Most depended-upon NMP packages. https://www.npmjs.com/browse/

depended, 2014.
[16] Testing and deploying with ordered npm run

scripts. http://blog.npmjs.org/post/127671403050/
testing-and-deploying-with-ordered-npm-run-scripts, 2015.

[17] SLOC (source lines of code) counter. https://github.com/flosse/sloc/,
2016.

[18] TestScanner. https://github.com/saltlab/testscanner, 2016.
[19] S. Artzi, J. Dolby, S. Jensen, A. Møller, and F. Tip. A framework for

automated testing of JavaScript web applications. In Proceedings of the
International Conference on Software Engineering (ICSE), pages 571–
580. ACM, 2011.

[20] D. Crockford. JavaScript: the good parts. O’Reilly Media, Incorporated,
2008.

[21] K. Gallaba, A. Mesbah, and I. Beschastnikh. Don’t call us, we’ll
call you: Characterizing callbacks in JavaScript. In Proceedings of the
ACM/IEEE International Symposium on Empirical Software Engineering
and Measurement (ESEM), pages 247–256. IEEE Computer Society,
2015.

[22] GitHut. A small place to discover languages in GitHub. http://githut.info,
2016.

[23] P. Heidegger and P. Thiemann. Contract-driven testing of Javascript
code. In Proceedings of the 48th International Conference on Objects,
Models, Components, Patterns, TOOLS’10, pages 154–172. Springer-
Verlag, 2010.

[24] L. Inozemtseva and R. Holmes. Coverage is not strongly correlated with
test suite effectiveness. In Proceedings of the International Conference
on Software Engineering (ICSE), 2014.

[25] D. Jang, R. Jhala, S. Lerner, and H. Shacham. An empirical study of
privacy-violating information flows in JavaScript web applications. In
Proceedings of the 17th ACM conference on Computer and communi-
cations security, pages 270–283. ACM, 2010.

[26] R. Just, D. Jalali, L. Inozemtseva, M. D. Ernst, R. Holmes, and G. Fraser.
Are mutants a valid substitute for real faults in software testing? In
Proceedings of the ACM SIGSOFT International Symposium on the
Foundations of Software Engineering (FSE), FSE 2014, pages 654–665,
New York, NY, USA, 2014. ACM.

[27] G. Li, E. Andreasen, and I. Ghosh. SymJS: Automatic symbolic testing
of JavaScript web applications. In Proceedings of the ACM SIGSOFT
International Symposium on the Foundations of Software Engineering
(FSE), page 11 pages. ACM, 2014.

[28] A. Milani Fard and A. Mesbah. JSNose: Detecting JavaScript code
smells. In Proceedings of the International Conference on Source Code
Analysis and Manipulation (SCAM), pages 116–125. IEEE Computer
Society, 2013.

[29] A. Milani Fard, A. Mesbah, and E. Wohlstadter. Generating fixtures for
JavaScript unit testing. In Proceedings of the IEEE/ACM International
Conference on Automated Software Engineering (ASE), pages 190–200.
IEEE Computer Society, 2015.

[30] A. Milani Fard, M. Mirzaaghaei, and A. Mesbah. Leveraging existing
tests in automated test generation for web applications. In Proceedings
of the IEEE/ACM International Conference on Automated Software
Engineering (ASE), pages 67–78. ACM, 2014.

[31] S. Mirshokraie, A. Mesbah, and K. Pattabiraman. Efficient JavaScript
mutation testing. In Proc. of the International Conference on Software

Testing, Verification and Validation (ICST). IEEE Computer Society,
2013.

[32] S. Mirshokraie, A. Mesbah, and K. Pattabiraman. Jseft: Automated
JavaScript unit test generation. In Proceedings of the International
Conference on Software Testing, Verification and Validation (ICST), page
10 pages. IEEE Computer Society, 2015.

[33] S. Mirshokraie, A. Mesbah, and K. Pattabiraman. Atrina: Inferring
unit oracles from GUI test cases. In Proceedings of the International
Conference on Software Testing, Verification, and Validation (ICST),
page 11 pages. IEEE Computer Society, 2016.

[34] H. V. Nguyen, H. A. Nguyen, A. T. Nguyen, and T. N. Nguyen.
Mining interprocedural, data-oriented usage patterns in JavaScript web
applications. In Proceedings of the 36th International Conference on
Software Engineering, pages 791–802. ACM, 2014.

[35] N. Nikiforakis, L. Invernizzi, A. Kapravelos, S. Van Acker, W. Joosen,
C. Kruegel, F. Piessens, and G. Vigna. You are what you include: large-
scale evaluation of remote JavaScript inclusions. In Proceedings of the
2012 ACM conference on Computer and communications security, pages
736–747. ACM, 2012.

[36] F. Ocariza, K. Bajaj, K. Pattabiraman, and A. Mesbah. An empirical
study of client-side JavaScript bugs. In Proceedings of the Interna-
tional Symposium on Empirical Software Engineering and Measurement
(ESEM), pages 55–64. IEEE Computer Society, 2013.

[37] F. Ocariza, K. Bajaj, K. Pattabiraman, and A. Mesbah. A study of causes
and consequences of client-side JavaScript bugs. IEEE Transactions on
Software Engineering (TSE), page 17 pages, 2017.

[38] P. Ratanaworabhan, B. Livshits, and B. G. Zorn. JSMeter: Comparing
the behavior of JavaScript benchmarks with real web applications.
In Proceedings of the 2010 USENIX Conference on Web Application
Development, WebApps’10, pages 3–3, Berkeley, CA, USA, 2010.
USENIX Association.

[39] G. Richards, C. Hammer, B. Burg, and J. Vitek. The eval that men do.
In ECOOP 2011–Object-Oriented Programming, pages 52–78. Springer,
2011.

[40] G. Richards, S. Lebresne, B. Burg, and J. Vitek. An analysis of
the dynamic behavior of JavaScript programs. In Conference on
Programming Language Design and Implementation (PLDI), pages 1–
12. ACM, 2010.

[41] P. Saxena, D. Akhawe, S. Hanna, F. Mao, S. McCamant, and D. Song.
A symbolic execution framework for JavaScript. In Proceedings of the
Symposium on Security and Privacy, pages 513–528. IEEE Computer
Society, 2010.

[42] K. Sen, S. Kalasapur, T. Brutch, and S. Gibbs. Jalangi: A selective
record-replay and dynamic analysis framework for JavaScript. In
Proceedings of the 9th Joint Meeting on Foundations of Software
Engineering, ESEC/FSE, pages 488–498. ACM, 2013.

[43] Stack Overflow. 2016 Developer Survey. http://stackoverflow.com/
research/developer-survey-2016, 2016.

[44] M. E. Trostler. Testable JavaScript. O’Reilly Media, Incorporated, 2013.
[45] A. Vahabzadeh, A. Milani Fard, and A. Mesbah. An empirical study of

bugs in test code. In Proceedings of the International Conference on
Software Maintenance and Evolution (ICSME), pages 101–110. IEEE
Computer Society, 2015.

[46] J. Weinberger, P. Saxena, D. Akhawe, M. Finifter, R. Shin, and D. Song.
An empirical analysis of XSS sanitization in web application frame-
works. Electrical Engineering and Computer Sciences University of
California at Berkeley, Technical Report, pages 1–17, 2011.

[47] C. Yue and H. Wang. Characterizing insecure JavaScript practices on the
web. In Proceedings of the International World Wide Web Conference
(WWW), pages 961–970. ACM, 2009.

[48] A. Zaidman, B. van Rompaey, S. Demeyer, and A. van Deursen. Mining
software repositories to study co-evolution of production and test code.
In Proceedings of the International Conference on Software Testing,
Verification and Validation (ICST), pages 220–229, 2008.

[49] Y. Zhang and A. Mesbah. Assertions are strongly correlated with test
suite effectiveness. In Proceedings of the joint meeting of the European
Software Engineering Conference and the ACM SIGSOFT Symposium
on the Foundations of Software Engineering (ESEC/FSE), pages 214–
224. ACM, 2015.

http://tntim96.github.io/JSCover/
https://mochajs.org/
https://github.com/mozilla/rhino
https://github.com/caolan/nodeunit
http://qunitjs.com/
http://www.techtalkdc.com/which-javascript-test-library-should-you-use-qunit-vs-jasmine-vs-mocha/
http://www.techtalkdc.com/which-javascript-test-library-should-you-use-qunit-vs-jasmine-vs-mocha/
https://www.toptal.com/javascript/writing-testable-code-in-javascript
https://www.toptal.com/javascript/writing-testable-code-in-javascript
http://www.adequatelygood.com/Writing-Testable-JavaScript.html
http://www.adequatelygood.com/Writing-Testable-JavaScript.html
https://github.com/showcases
http://jster.net/catalog
https://www.npmjs.com/browse/depended
https://www.npmjs.com/browse/depended
http://blog.npmjs.org/post/127671403050/testing-and-deploying-with-ordered-npm-run-scripts
http://blog.npmjs.org/post/127671403050/testing-and-deploying-with-ordered-npm-run-scripts
https://github.com/flosse/sloc/
https://github.com/saltlab/testscanner
http://githut.info
http://stackoverflow.com/research/developer-survey-2016
http://stackoverflow.com/research/developer-survey-2016

