Optimal joint session admission control in integrated WLAN and CDMA cellular networks with vertical handoff

TitleOptimal joint session admission control in integrated WLAN and CDMA cellular networks with vertical handoff
Publication TypeJournal Article
Year of Publication2007
AuthorsYu, F., and V. Krishnamurthy
JournalIEEE Transactions on Mobile Computing
Volume6
Pagination126–139
ISSN1536-1233
Abstract

This paper considers optimizing the utilization of radio resources in a heterogeneous integrated system consisting of two different networks: a wireless local area network (WLAN) and a wideband code division multiple access (CDMA) network. We propose a joint session admission control scheme for multimedia traffic that maximizes overall network revenue with quality of service (QoS) constraints over both the WLAN and the CDMA cellular networks. The WLAN operates under the IEEE 802.11e medium access control (MAC) protocol, which supports QoS for multimedia traffic. A novel concept of effective bandwidth is used in the CDMA network to derive the unified radio resource usage, taking into account both physical layer linear minimum mean square error (LMMSE) receivers and characteristics of the packet traffic. Numerical examples illustrate that the network revenue earned in the proposed joint admission control scheme is significantly larger than that when the individual networks are optimized independently with no vertical handoff between them. The revenue gain is also significant over the scheme in which vertical handoff is supported, but admission control is not done jointly. Furthermore, we show that the optimal joint admission control policy is a randomized policy, i.e., sessions are admitted to the system with probabilities in some states.

a place of mind, The University of British Columbia

Electrical and Computer Engineering
2332 Main Mall
Vancouver, BC Canada V6T 1Z4
Tel +1.604.822.2872
Fax +1.604.822.5949
Email:

Emergency Procedures | Accessibility | Contact UBC | © Copyright 2020 The University of British Columbia