Estimating the Strength of Boards Using Mixed Signals of MOE and X-Ray Images

TitleEstimating the Strength of Boards Using Mixed Signals of MOE and X-Ray Images
Publication TypeJournal Article
Year of Publication2008
AuthorsSaravi, A., P. D. Lawrence, and F. Lam
JournalIEEE Transactions on Instrumentation and Measurement
Volume57
Pagination2616–2622
ISSN0018-9456
Abstract

The most accurate way of identifying the strength of lumber requires destructive testing, which is clearly not useful for the production of lumber. An intelligent mechanics-based lumber grading system was developed to nondestructively provide better estimation of the strength of a board. This system processed X-ray-extracted geometric features (of 1080 boards that eventually underwent destructive strength testing) by using a physical model of the lumber based on finite-element methods (FEMs) to generate associated stress fields'. The stress fields were then fed to a feature-extracting processor, which produced one strength-predicting feature. The modulus of elasticity (MOE) profiles were separately processed, and another feature was extracted based on the minimum point in the MOE averaged profile, with 15% of the data cut from each end. Then, the two MOE and X-ray extracted features were combined (with four different algorithms) into a single feature to estimate the strength of the boards. By applying four different algorithms to a database of more than 1000 boards, to estimate the strength of the boards, coefficient of determination r(2) values of 0.64, 0.65, 0.65, and 0.65 were achieved for the different algorithms, respectively. The results were improved by dividing the database into two sets (based on the dates that the two batches were delivered), and r(2) values of 0.69, 0.71, 0.71, and 0.71 were achieved for the different algorithms, respectively.

URLhttp://dx.doi.org/10.1109/TIM.2008.924931
DOI10.1109/TIM.2008.924931

a place of mind, The University of British Columbia

Electrical and Computer Engineering
2332 Main Mall
Vancouver, BC Canada V6T 1Z4
Tel +1.604.822.2872
Fax +1.604.822.5949
Email:

Emergency Procedures | Accessibility | Contact UBC | © Copyright 2018 The University of British Columbia