Adaptive channel estimation using pilot-embedded data-bearing approach for MIMO-OFDM systems

TitleAdaptive channel estimation using pilot-embedded data-bearing approach for MIMO-OFDM systems
Publication TypeJournal Article
Year of Publication2006
AuthorsPirak, C., Z. J. Wang, K. J. R. Liu, and S. Jitapunkul
JournalIEEE Transactions on Signal Processing
Volume54
Pagination4706–4716
ISSN1053-587X
Abstract

Multiple-input multiple-output (MIMO) orthogonal-frequency-division-multiplexing (OFDM) systems employing coherent receivers crucially require channel state information (CSI). Since the multipath delay profile of channels is arbitrary in the MIMO-OFDM systems, an effective channel estimator is needed. In this paper, we first develop a pilot-embedded data-bearing (PEDB) approach for joint channel estimation and data detection, in which PEDB least-square (LS) channel estimator and maximum-likelihood (NIL) data detection are employed. Then, we propose an LS fast Fourier transform (FFT)-based channel estimator by employing the concept of FFT-based channel estimation to improve the PEDB-LS one via choosing a certain number of significant taps for constructing a channel frequency response. The effects of model mismatch error inherent in the proposed LS FFT-based estimator when considering noninteger multipath delay profiles and its performance analysis are investigated. The relationship between the mean-squared error (MSE) and the number of chosen significant taps is revealed, and hence, the optimal criterion for obtaining the optimum number of significant taps is explored. Under the framework of pilot embedding, we further propose an adaptive LS FFT-based channel. estimator employing the optimum number of significant taps to compensate the model mismatch error as well as minimize the corresponding noise effect. Simulation results reveal that the adaptive LS FFT-based estimator is superior to the LS FFT-based and PEDB-LS estimators under quasi-static channels or low Doppler's shift regimes.

URLhttp://dx.doi.org/10.1109/TSP.2006.881265
DOI10.1109/TSP.2006.881265

a place of mind, The University of British Columbia

Electrical and Computer Engineering
2332 Main Mall
Vancouver, BC Canada V6T 1Z4
Tel +1.604.822.2872
Fax +1.604.822.5949
Email:

Emergency Procedures | Accessibility | Contact UBC | © Copyright 2020 The University of British Columbia