Cost and performance optimization in IP switched-routers

TitleCost and performance optimization in IP switched-routers
Publication TypeConference Paper
Year of Publication1999
AuthorsChan, H. C. B., H. M. Alnuweiri, and V. C. M. Leung
Conference NameCommunications, Computers and Signal Processing, 1999 IEEE Pacific Rim Conference on
Pagination345 -348
Keywordscost-performance trade-offs, distributed router architecture, economics, forwarding engines, high-speed router, Internet, IP switched-routers, optimal allocation, optimisation, packet forwarding rates, packet switching, parallel router architecture, performance optimization, processing power allocation, router models, telecommunication network routing

The explosive growth of Internet users, the increased user demand for bandwidth, and the declining cost of technology, has all resulted in the emergence of new classes of high-speed distributed IP router architectures with packet forwarding rates on the order of gigabits or even terabits per second. This paper develops an analytical framework for modeling and analyzing the impact of technological factors on the cost-performance trade-offs in distributed router architectures. The main trade-off in a distributed router results naturally from moving the main packet forwarding and processing power from a centralized forwarding engine to an ensemble of smaller forwarding engines either dedicated to or shared among the line cards. Processing packets in these smaller engines can be much cheaper (by as much two to three orders of magnitude) than in a centralized forwarding engine. Therefore, the main goal of our modeling framework is to determine an optimal allocation of processing power to the forwarding engines (in a distributed router) to minimize overall router cost while achieving a given level of packet forwarding performance. Two types of router models are analyzed using the proposed framework: a distributed router architecture and parallel router architecture


a place of mind, The University of British Columbia

Electrical and Computer Engineering
2332 Main Mall
Vancouver, BC Canada V6T 1Z4
Tel +1.604.822.2872
Fax +1.604.822.5949

Emergency Procedures | Accessibility | Contact UBC | © Copyright 2021 The University of British Columbia