Brain-computer interface design for asynchronous control applications: Improvements to the LF-ASD asynchronous brain switch

TitleBrain-computer interface design for asynchronous control applications: Improvements to the LF-ASD asynchronous brain switch
Publication TypeJournal Article
Year of Publication2004
AuthorsBorisoff, J. F., S. G. Mason, A. Bashashati, and G. E. Birch
JournalIEEE Transactions on Biomedical Engineering
Volume51
Pagination985–992
ISSN0018-9294
Abstract

The low-frequency asynchronous switch design (LF-ASD) was introduced as a direct brain-computer interface (130) technology for asynchronous control applications. The LF-ASD operates as an asynchronous brain switch (ABS) which is activated only when a user intends control and maintains an inactive state output when the user is not meaning to control the device (i.e., they may be idle, thinking about a problem, or performing some other action). Results from LF-ASD evaluations have shown promise, although the reported error rates are too high for most practical applications. This paper presents the evaluation of four new LF-ASD designs with data collected from individuals with high-level spinal cord injuries and able-bodied subjects. These new designs incorporated electroencephalographic energy normalization and feature space dimensionality reduction. The error characteristics of the new ABS designs were significantly better than the LF-ASD design with true positive rate increases of approximately 33% for false positive rates in the range of 1%-2%. The results demonstrate that the dimensionality of the LF-ASD feature space can be reduced without performance degradation. The results also confirm previous findings that spinal cord-injured subjects can operate ABS designs to the same ability as able-bodied subjects.

URLhttp://dx.doi.org/10.1109/TBME.2004.827078
DOI10.1109/TBME.2004.827078

a place of mind, The University of British Columbia

Electrical and Computer Engineering
2332 Main Mall
Vancouver, BC Canada V6T 1Z4
Tel +1.604.822.2872
Fax +1.604.822.5949
Email:

Emergency Procedures | Accessibility | Contact UBC | © Copyright 2021 The University of British Columbia