Spectral clustering algorithms for ultrasound image segmentation

TitleSpectral clustering algorithms for ultrasound image segmentation
Publication TypeJournal Article
Year of Publication2005
AuthorsArchip, N., R. Rohling, P. Cooperberg, H. Tahmasebpour, and S. K. Warfield
JournalMed Image Comput Comput Assist Interv
Volume8
Pagination862-9
Abstract

Image segmentation algorithms derived from spectral clustering analysis rely on the eigenvectors of the Laplacian of a weighted graph obtained from the image. The NCut criterion was previously used for image segmentation in supervised manner. We derive a new strategy for unsupervised image segmentation. This article describes an initial investigation to determine the suitability of such segmentation techniques for ultrasound images. The extension of the NCut technique to the unsupervised clustering is first described. The novel segmentation algorithm is then performed on simulated ultrasound images. Tests are also performed on abdominal and fetal images with the segmentation results compared to manual segmentation. Comparisons with the classical NCut algorithm are also presented. Finally, segmentation results on other types of medical images are shown.

a place of mind, The University of British Columbia

Electrical and Computer Engineering
2332 Main Mall
Vancouver, BC Canada V6T 1Z4
Tel +1.604.822.2872
Fax +1.604.822.5949
Email:

Emergency Procedures | Accessibility | Contact UBC | © Copyright 2020 The University of British Columbia