A knowledge-based approach to automatic detection of the spinal cord in CT images

TitleA knowledge-based approach to automatic detection of the spinal cord in CT images
Publication TypeJournal Article
Year of Publication2002
AuthorsArchip, N., P. J. Erard, M. Egmont-Petersen, J. M. Haefliger, and J. F. Germond
JournalIEEE Transactions on Medical Imaging

Accurate planning of radiation therapy entails the definition of treatment volumes and a clear delimitation of normal tissue of which unnecessary exposure should be prevented. The spinal cord is a radiosensitive organ, which should be precisely identified because an overexposure to radiation may lead to undesired complications for the patient such as neuronal disfunction or paralysis. In this paper, a knowledge-based approach to identifying the spinal cord in computed tomography images of the thorax is presented. The approach relies on a knowledge-base which consists of a so-called anatomical structures map (ASM) and a task-oriented architecture called the plan solver. The ASM contains a frame-like knowledge representation of the macro-anatomy in the human thorax. The plan solver is responsible for determining the position, orientation and size of the structures of interest to radiation therapy. The plan solver relies on a number of image processing operators. Some are so-called atomic (e.g., thresholding and snakes) whereas others are composite. The whole system has been implemented on a standard PC. Experiments performed on the image material from 23 patients show that the approach results in a reliable recognition of the spinal cord (92% accuracy) and the spinal canal (85% accuracy). The lamina is more problematic to locate correctly (accuracy 72%). The position of the outer thorax is always determined correctly.


a place of mind, The University of British Columbia

Electrical and Computer Engineering
2332 Main Mall
Vancouver, BC Canada V6T 1Z4
Tel +1.604.822.2872
Fax +1.604.822.5949

Emergency Procedures | Accessibility | Contact UBC | © Copyright 2021 The University of British Columbia